4.10.47 (7y(x)3x+3)y(x)+3y(x)7x+7=0

ODE
(7y(x)3x+3)y(x)+3y(x)7x+7=0 ODE Classification

[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

Book solution method
Equation linear in the variables, y(x)=f(X1X2)

Mathematica
cpu = 1.94773 (sec), leaf count = 7785

{{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,1]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,2]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,3]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,4]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,5]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,6]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,7]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,8]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,9]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,10]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,11]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,12]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,13]},{y(x)3(x1)717Root[(2560000000000x1435840000000000x13+232960000000000x12931840000000000x11+2562560000000000x105125120000000000x9+7687680000000000x88785920000000000x7+7687680000000000x65125120000000000x5+2562560000000000x4931840000000000x3+232960000000000x235840000000000x+2560000000000e140c19+2560000000000)#114+(448000000000x12+5376000000000x1129568000000000x10+98560000000000x9221760000000000x8+354816000000000x7413952000000000x6+354816000000000x5221760000000000x4+98560000000000x329568000000000x2+5376000000000x448000000000)#112+(44800000000x11492800000000x10+2464000000000x97392000000000x8+14784000000000x720697600000000x6+20697600000000x514784000000000x4+7392000000000x32464000000000x2+492800000000x44800000000)#111+(28560000000x10285600000000x9+1285200000000x83427200000000x7+5997600000000x67197120000000x5+5997600000000x43427200000000x3+1285200000000x2285600000000x+28560000000)#110+(5891200000x9+53020800000x8212083200000x7+494860800000x6742291200000x5+742291200000x4494860800000x3+212083200000x253020800000x+5891200000)#19+(453600000x8+3628800000x712700800000x6+25401600000x531752000000x4+25401600000x312700800000x2+3628800000x453600000)#18+(247680000x71733760000x6+5201280000x58668800000x4+8668800000x35201280000x2+1733760000x247680000)#17+(21168000x6+127008000x5317520000x4+423360000x3317520000x2+127008000x21168000)#16+(1993600x5+9968000x419936000x3+19936000x29968000x+1993600)#15+(586656x42346624x3+3519936x22346624x+586656)#14+(57344x3+172032x2172032x+57344)#13+(2996x25992x+2996)#12+(8484x)#1+1&,14]}}

Maple
cpu = 0.023 (sec), leaf count = 47

{57ln(1xy(x)1+x)27ln(xy(x)11+x)ln(1+x)_C1=0} Mathematica raw input

DSolve[7 - 7*x + 3*y[x] + (3 - 3*x + 7*y[x])*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*
x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624
*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x + 19936
000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 12700800
0*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 - 21168000*x
^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 + 8668800000*x^3 - 866880
0000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (-453600000 +
 3628800000*x - 12700800000*x^2 + 25401600000*x^3 - 31752000000*x^4 + 2540160000
0*x^5 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (5891200000 - 5
3020800000*x + 212083200000*x^2 - 494860800000*x^3 + 742291200000*x^4 - 74229120
0000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5891200000*x^
9)*#1^9 + (28560000000 - 285600000000*x + 1285200000000*x^2 - 3427200000000*x^3 
+ 5997600000000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 3427200000000*x^7 
+ 1285200000000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (-44800000000
 + 492800000000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14784000000000*x^4 +
 20697600000000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 - 7392000000000*x^
8 + 2464000000000*x^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 + (-44800000
0000 + 5376000000000*x - 29568000000000*x^2 + 98560000000000*x^3 - 2217600000000
00*x^4 + 354816000000000*x^5 - 413952000000000*x^6 + 354816000000000*x^7 - 22176
0000000000*x^8 + 98560000000000*x^9 - 29568000000000*x^10 + 5376000000000*x^11 -
 448000000000*x^12)*#1^12 + (2560000000000 + 2560000000000*E^((140*C[1])/9) - 35
840000000000*x + 232960000000000*x^2 - 931840000000000*x^3 + 2562560000000000*x^
4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 8785920000000000*x^7 + 7687680
000000000*x^8 - 5125120000000000*x^9 + 2562560000000000*x^10 - 931840000000000*x
^11 + 232960000000000*x^12 - 35840000000000*x^13 + 2560000000000*x^14)*#1^14 & ,
 1])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x +
 2996*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2
346624*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x +
 19936000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 12
7008000*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 - 2116
8000*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 + 8668800000*x^3 - 
8668800000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (-45360
0000 + 3628800000*x - 12700800000*x^2 + 25401600000*x^3 - 31752000000*x^4 + 2540
1600000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (58912000
00 - 53020800000*x + 212083200000*x^2 - 494860800000*x^3 + 742291200000*x^4 - 74
2291200000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5891200
000*x^9)*#1^9 + (28560000000 - 285600000000*x + 1285200000000*x^2 - 342720000000
0*x^3 + 5997600000000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 342720000000
0*x^7 + 1285200000000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (-44800
000000 + 492800000000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14784000000000
*x^4 + 20697600000000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 - 7392000000
000*x^8 + 2464000000000*x^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 + (-44
8000000000 + 5376000000000*x - 29568000000000*x^2 + 98560000000000*x^3 - 2217600
00000000*x^4 + 354816000000000*x^5 - 413952000000000*x^6 + 354816000000000*x^7 -
 221760000000000*x^8 + 98560000000000*x^9 - 29568000000000*x^10 + 5376000000000*
x^11 - 448000000000*x^12)*#1^12 + (2560000000000 + 2560000000000*E^((140*C[1])/9
) - 35840000000000*x + 232960000000000*x^2 - 931840000000000*x^3 + 2562560000000
000*x^4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 8785920000000000*x^7 + 7
687680000000000*x^8 - 5125120000000000*x^9 + 2562560000000000*x^10 - 93184000000
0000*x^11 + 232960000000000*x^12 - 35840000000000*x^13 + 2560000000000*x^14)*#1^
14 & , 2])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 59
92*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (5866
56 - 2346624*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 99680
00*x + 19936000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-2116800
0 + 127008000*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 
- 21168000*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 + 8668800000*
x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (
-453600000 + 3628800000*x - 12700800000*x^2 + 25401600000*x^3 - 31752000000*x^4 
+ 25401600000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (58
91200000 - 53020800000*x + 212083200000*x^2 - 494860800000*x^3 + 742291200000*x^
4 - 742291200000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5
891200000*x^9)*#1^9 + (28560000000 - 285600000000*x + 1285200000000*x^2 - 342720
0000000*x^3 + 5997600000000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 342720
0000000*x^7 + 1285200000000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (
-44800000000 + 492800000000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14784000
000000*x^4 + 20697600000000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 - 7392
000000000*x^8 + 2464000000000*x^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 
+ (-448000000000 + 5376000000000*x - 29568000000000*x^2 + 98560000000000*x^3 - 2
21760000000000*x^4 + 354816000000000*x^5 - 413952000000000*x^6 + 354816000000000
*x^7 - 221760000000000*x^8 + 98560000000000*x^9 - 29568000000000*x^10 + 53760000
00000*x^11 - 448000000000*x^12)*#1^12 + (2560000000000 + 2560000000000*E^((140*C
[1])/9) - 35840000000000*x + 232960000000000*x^2 - 931840000000000*x^3 + 2562560
000000000*x^4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 8785920000000000*x
^7 + 7687680000000000*x^8 - 5125120000000000*x^9 + 2562560000000000*x^10 - 93184
0000000000*x^11 + 232960000000000*x^12 - 35840000000000*x^13 + 2560000000000*x^1
4)*#1^14 & , 3])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (299
6 - 5992*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 +
 (586656 - 2346624*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 -
 9968000*x + 19936000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-2
1168000 + 127008000*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 12700800
0*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 + 86688
00000*x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1
^7 + (-453600000 + 3628800000*x - 12700800000*x^2 + 25401600000*x^3 - 3175200000
0*x^4 + 25401600000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8
 + (5891200000 - 53020800000*x + 212083200000*x^2 - 494860800000*x^3 + 742291200
000*x^4 - 742291200000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 53020800000*x
^8 - 5891200000*x^9)*#1^9 + (28560000000 - 285600000000*x + 1285200000000*x^2 - 
3427200000000*x^3 + 5997600000000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 
3427200000000*x^7 + 1285200000000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^
10 + (-44800000000 + 492800000000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14
784000000000*x^4 + 20697600000000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 
- 7392000000000*x^8 + 2464000000000*x^9 - 492800000000*x^10 + 44800000000*x^11)*
#1^11 + (-448000000000 + 5376000000000*x - 29568000000000*x^2 + 98560000000000*x
^3 - 221760000000000*x^4 + 354816000000000*x^5 - 413952000000000*x^6 + 354816000
000000*x^7 - 221760000000000*x^8 + 98560000000000*x^9 - 29568000000000*x^10 + 53
76000000000*x^11 - 448000000000*x^12)*#1^12 + (2560000000000 + 2560000000000*E^(
(140*C[1])/9) - 35840000000000*x + 232960000000000*x^2 - 931840000000000*x^3 + 2
562560000000000*x^4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 878592000000
0000*x^7 + 7687680000000000*x^8 - 5125120000000000*x^9 + 2562560000000000*x^10 -
 931840000000000*x^11 + 232960000000000*x^12 - 35840000000000*x^13 + 25600000000
00*x^14)*#1^14 & , 4])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 
+ (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*
#1^3 + (586656 - 2346624*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (199
3600 - 9968000*x + 19936000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5
 + (-21168000 + 127008000*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 12
7008000*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 +
 8668800000*x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x
^7)*#1^7 + (-453600000 + 3628800000*x - 12700800000*x^2 + 25401600000*x^3 - 3175
2000000*x^4 + 25401600000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8
)*#1^8 + (5891200000 - 53020800000*x + 212083200000*x^2 - 494860800000*x^3 + 742
291200000*x^4 - 742291200000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 5302080
0000*x^8 - 5891200000*x^9)*#1^9 + (28560000000 - 285600000000*x + 1285200000000*
x^2 - 3427200000000*x^3 + 5997600000000*x^4 - 7197120000000*x^5 + 5997600000000*
x^6 - 3427200000000*x^7 + 1285200000000*x^8 - 285600000000*x^9 + 28560000000*x^1
0)*#1^10 + (-44800000000 + 492800000000*x - 2464000000000*x^2 + 7392000000000*x^
3 - 14784000000000*x^4 + 20697600000000*x^5 - 20697600000000*x^6 + 1478400000000
0*x^7 - 7392000000000*x^8 + 2464000000000*x^9 - 492800000000*x^10 + 44800000000*
x^11)*#1^11 + (-448000000000 + 5376000000000*x - 29568000000000*x^2 + 9856000000
0000*x^3 - 221760000000000*x^4 + 354816000000000*x^5 - 413952000000000*x^6 + 354
816000000000*x^7 - 221760000000000*x^8 + 98560000000000*x^9 - 29568000000000*x^1
0 + 5376000000000*x^11 - 448000000000*x^12)*#1^12 + (2560000000000 + 25600000000
00*E^((140*C[1])/9) - 35840000000000*x + 232960000000000*x^2 - 931840000000000*x
^3 + 2562560000000000*x^4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 878592
0000000000*x^7 + 7687680000000000*x^8 - 5125120000000000*x^9 + 2562560000000000*
x^10 - 931840000000000*x^11 + 232960000000000*x^12 - 35840000000000*x^13 + 25600
00000000*x^14)*#1^14 & , 5])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*
x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344
*x^3)*#1^3 + (586656 - 2346624*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 
+ (1993600 - 9968000*x + 19936000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5
)*#1^5 + (-21168000 + 127008000*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^
4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000
*x^2 + 8668800000*x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 24768
0000*x^7)*#1^7 + (-453600000 + 3628800000*x - 12700800000*x^2 + 25401600000*x^3 
- 31752000000*x^4 + 25401600000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 4536000
00*x^8)*#1^8 + (5891200000 - 53020800000*x + 212083200000*x^2 - 494860800000*x^3
 + 742291200000*x^4 - 742291200000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 5
3020800000*x^8 - 5891200000*x^9)*#1^9 + (28560000000 - 285600000000*x + 12852000
00000*x^2 - 3427200000000*x^3 + 5997600000000*x^4 - 7197120000000*x^5 + 59976000
00000*x^6 - 3427200000000*x^7 + 1285200000000*x^8 - 285600000000*x^9 + 285600000
00*x^10)*#1^10 + (-44800000000 + 492800000000*x - 2464000000000*x^2 + 7392000000
000*x^3 - 14784000000000*x^4 + 20697600000000*x^5 - 20697600000000*x^6 + 1478400
0000000*x^7 - 7392000000000*x^8 + 2464000000000*x^9 - 492800000000*x^10 + 448000
00000*x^11)*#1^11 + (-448000000000 + 5376000000000*x - 29568000000000*x^2 + 9856
0000000000*x^3 - 221760000000000*x^4 + 354816000000000*x^5 - 413952000000000*x^6
 + 354816000000000*x^7 - 221760000000000*x^8 + 98560000000000*x^9 - 295680000000
00*x^10 + 5376000000000*x^11 - 448000000000*x^12)*#1^12 + (2560000000000 + 25600
00000000*E^((140*C[1])/9) - 35840000000000*x + 232960000000000*x^2 - 93184000000
0000*x^3 + 2562560000000000*x^4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 
8785920000000000*x^7 + 7687680000000000*x^8 - 5125120000000000*x^9 + 25625600000
00000*x^10 - 931840000000000*x^11 + 232960000000000*x^12 - 35840000000000*x^13 +
 2560000000000*x^14)*#1^14 & , 6])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84
 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 -
 57344*x^3)*#1^3 + (586656 - 2346624*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)
*#1^4 + (1993600 - 9968000*x + 19936000*x^2 - 19936000*x^3 + 9968000*x^4 - 19936
00*x^5)*#1^5 + (-21168000 + 127008000*x - 317520000*x^2 + 423360000*x^3 - 317520
000*x^4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201
280000*x^2 + 8668800000*x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733760000*x^6 +
 247680000*x^7)*#1^7 + (-453600000 + 3628800000*x - 12700800000*x^2 + 2540160000
0*x^3 - 31752000000*x^4 + 25401600000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 4
53600000*x^8)*#1^8 + (5891200000 - 53020800000*x + 212083200000*x^2 - 4948608000
00*x^3 + 742291200000*x^4 - 742291200000*x^5 + 494860800000*x^6 - 212083200000*x
^7 + 53020800000*x^8 - 5891200000*x^9)*#1^9 + (28560000000 - 285600000000*x + 12
85200000000*x^2 - 3427200000000*x^3 + 5997600000000*x^4 - 7197120000000*x^5 + 59
97600000000*x^6 - 3427200000000*x^7 + 1285200000000*x^8 - 285600000000*x^9 + 285
60000000*x^10)*#1^10 + (-44800000000 + 492800000000*x - 2464000000000*x^2 + 7392
000000000*x^3 - 14784000000000*x^4 + 20697600000000*x^5 - 20697600000000*x^6 + 1
4784000000000*x^7 - 7392000000000*x^8 + 2464000000000*x^9 - 492800000000*x^10 + 
44800000000*x^11)*#1^11 + (-448000000000 + 5376000000000*x - 29568000000000*x^2 
+ 98560000000000*x^3 - 221760000000000*x^4 + 354816000000000*x^5 - 4139520000000
00*x^6 + 354816000000000*x^7 - 221760000000000*x^8 + 98560000000000*x^9 - 295680
00000000*x^10 + 5376000000000*x^11 - 448000000000*x^12)*#1^12 + (2560000000000 +
 2560000000000*E^((140*C[1])/9) - 35840000000000*x + 232960000000000*x^2 - 93184
0000000000*x^3 + 2562560000000000*x^4 - 5125120000000000*x^5 + 7687680000000000*
x^6 - 8785920000000000*x^7 + 7687680000000000*x^8 - 5125120000000000*x^9 + 25625
60000000000*x^10 - 931840000000000*x^11 + 232960000000000*x^12 - 35840000000000*
x^13 + 2560000000000*x^14)*#1^14 & , 7])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1
 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 172032
*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624*x + 3519936*x^2 - 2346624*x^3 + 58665
6*x^4)*#1^4 + (1993600 - 9968000*x + 19936000*x^2 - 19936000*x^3 + 9968000*x^4 -
 1993600*x^5)*#1^5 + (-21168000 + 127008000*x - 317520000*x^2 + 423360000*x^3 - 
317520000*x^4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1733760000*x 
- 5201280000*x^2 + 8668800000*x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733760000
*x^6 + 247680000*x^7)*#1^7 + (-453600000 + 3628800000*x - 12700800000*x^2 + 2540
1600000*x^3 - 31752000000*x^4 + 25401600000*x^5 - 12700800000*x^6 + 3628800000*x
^7 - 453600000*x^8)*#1^8 + (5891200000 - 53020800000*x + 212083200000*x^2 - 4948
60800000*x^3 + 742291200000*x^4 - 742291200000*x^5 + 494860800000*x^6 - 21208320
0000*x^7 + 53020800000*x^8 - 5891200000*x^9)*#1^9 + (28560000000 - 285600000000*
x + 1285200000000*x^2 - 3427200000000*x^3 + 5997600000000*x^4 - 7197120000000*x^
5 + 5997600000000*x^6 - 3427200000000*x^7 + 1285200000000*x^8 - 285600000000*x^9
 + 28560000000*x^10)*#1^10 + (-44800000000 + 492800000000*x - 2464000000000*x^2 
+ 7392000000000*x^3 - 14784000000000*x^4 + 20697600000000*x^5 - 20697600000000*x
^6 + 14784000000000*x^7 - 7392000000000*x^8 + 2464000000000*x^9 - 492800000000*x
^10 + 44800000000*x^11)*#1^11 + (-448000000000 + 5376000000000*x - 2956800000000
0*x^2 + 98560000000000*x^3 - 221760000000000*x^4 + 354816000000000*x^5 - 4139520
00000000*x^6 + 354816000000000*x^7 - 221760000000000*x^8 + 98560000000000*x^9 - 
29568000000000*x^10 + 5376000000000*x^11 - 448000000000*x^12)*#1^12 + (256000000
0000 + 2560000000000*E^((140*C[1])/9) - 35840000000000*x + 232960000000000*x^2 -
 931840000000000*x^3 + 2562560000000000*x^4 - 5125120000000000*x^5 + 76876800000
00000*x^6 - 8785920000000000*x^7 + 7687680000000000*x^8 - 5125120000000000*x^9 +
 2562560000000000*x^10 - 931840000000000*x^11 + 232960000000000*x^12 - 358400000
00000*x^13 + 2560000000000*x^14)*#1^14 & , 8])}, {y[x] -> (3*(-1 + x))/7 - 1/(7*
Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 - 172032*x + 
172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624*x + 3519936*x^2 - 2346624*x^3 +
 586656*x^4)*#1^4 + (1993600 - 9968000*x + 19936000*x^2 - 19936000*x^3 + 9968000
*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 127008000*x - 317520000*x^2 + 423360000*
x^3 - 317520000*x^4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1733760
000*x - 5201280000*x^2 + 8668800000*x^3 - 8668800000*x^4 + 5201280000*x^5 - 1733
760000*x^6 + 247680000*x^7)*#1^7 + (-453600000 + 3628800000*x - 12700800000*x^2 
+ 25401600000*x^3 - 31752000000*x^4 + 25401600000*x^5 - 12700800000*x^6 + 362880
0000*x^7 - 453600000*x^8)*#1^8 + (5891200000 - 53020800000*x + 212083200000*x^2 
- 494860800000*x^3 + 742291200000*x^4 - 742291200000*x^5 + 494860800000*x^6 - 21
2083200000*x^7 + 53020800000*x^8 - 5891200000*x^9)*#1^9 + (28560000000 - 2856000
00000*x + 1285200000000*x^2 - 3427200000000*x^3 + 5997600000000*x^4 - 7197120000
000*x^5 + 5997600000000*x^6 - 3427200000000*x^7 + 1285200000000*x^8 - 2856000000
00*x^9 + 28560000000*x^10)*#1^10 + (-44800000000 + 492800000000*x - 246400000000
0*x^2 + 7392000000000*x^3 - 14784000000000*x^4 + 20697600000000*x^5 - 2069760000
0000*x^6 + 14784000000000*x^7 - 7392000000000*x^8 + 2464000000000*x^9 - 49280000
0000*x^10 + 44800000000*x^11)*#1^11 + (-448000000000 + 5376000000000*x - 2956800
0000000*x^2 + 98560000000000*x^3 - 221760000000000*x^4 + 354816000000000*x^5 - 4
13952000000000*x^6 + 354816000000000*x^7 - 221760000000000*x^8 + 98560000000000*
x^9 - 29568000000000*x^10 + 5376000000000*x^11 - 448000000000*x^12)*#1^12 + (256
0000000000 + 2560000000000*E^((140*C[1])/9) - 35840000000000*x + 232960000000000
*x^2 - 931840000000000*x^3 + 2562560000000000*x^4 - 5125120000000000*x^5 + 76876
80000000000*x^6 - 8785920000000000*x^7 + 7687680000000000*x^8 - 5125120000000000
*x^9 + 2562560000000000*x^10 - 931840000000000*x^11 + 232960000000000*x^12 - 358
40000000000*x^13 + 2560000000000*x^14)*#1^14 & , 9])}, {y[x] -> (3*(-1 + x))/7 -
 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 - 17203
2*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624*x + 3519936*x^2 - 2346624
*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x + 19936000*x^2 - 19936000*x^3 + 9
968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 127008000*x - 317520000*x^2 + 4233
60000*x^3 - 317520000*x^4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (-247680000 + 1
733760000*x - 5201280000*x^2 + 8668800000*x^3 - 8668800000*x^4 + 5201280000*x^5 
- 1733760000*x^6 + 247680000*x^7)*#1^7 + (-453600000 + 3628800000*x - 1270080000
0*x^2 + 25401600000*x^3 - 31752000000*x^4 + 25401600000*x^5 - 12700800000*x^6 + 
3628800000*x^7 - 453600000*x^8)*#1^8 + (5891200000 - 53020800000*x + 21208320000
0*x^2 - 494860800000*x^3 + 742291200000*x^4 - 742291200000*x^5 + 494860800000*x^
6 - 212083200000*x^7 + 53020800000*x^8 - 5891200000*x^9)*#1^9 + (28560000000 - 2
85600000000*x + 1285200000000*x^2 - 3427200000000*x^3 + 5997600000000*x^4 - 7197
120000000*x^5 + 5997600000000*x^6 - 3427200000000*x^7 + 1285200000000*x^8 - 2856
00000000*x^9 + 28560000000*x^10)*#1^10 + (-44800000000 + 492800000000*x - 246400
0000000*x^2 + 7392000000000*x^3 - 14784000000000*x^4 + 20697600000000*x^5 - 2069
7600000000*x^6 + 14784000000000*x^7 - 7392000000000*x^8 + 2464000000000*x^9 - 49
2800000000*x^10 + 44800000000*x^11)*#1^11 + (-448000000000 + 5376000000000*x - 2
9568000000000*x^2 + 98560000000000*x^3 - 221760000000000*x^4 + 354816000000000*x
^5 - 413952000000000*x^6 + 354816000000000*x^7 - 221760000000000*x^8 + 985600000
00000*x^9 - 29568000000000*x^10 + 5376000000000*x^11 - 448000000000*x^12)*#1^12 
+ (2560000000000 + 2560000000000*E^((140*C[1])/9) - 35840000000000*x + 232960000
000000*x^2 - 931840000000000*x^3 + 2562560000000000*x^4 - 5125120000000000*x^5 +
 7687680000000000*x^6 - 8785920000000000*x^7 + 7687680000000000*x^8 - 5125120000
000000*x^9 + 2562560000000000*x^10 - 931840000000000*x^11 + 232960000000000*x^12
 - 35840000000000*x^13 + 2560000000000*x^14)*#1^14 & , 10])}, {y[x] -> (3*(-1 + 
x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + (57344 
- 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624*x + 3519936*x^2 - 
2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x + 19936000*x^2 - 19936000*
x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 127008000*x - 317520000*x^2
 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (-247680
000 + 1733760000*x - 5201280000*x^2 + 8668800000*x^3 - 8668800000*x^4 + 52012800
00*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (-453600000 + 3628800000*x - 127
00800000*x^2 + 25401600000*x^3 - 31752000000*x^4 + 25401600000*x^5 - 12700800000
*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (5891200000 - 53020800000*x + 2120
83200000*x^2 - 494860800000*x^3 + 742291200000*x^4 - 742291200000*x^5 + 49486080
0000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5891200000*x^9)*#1^9 + (28560000
000 - 285600000000*x + 1285200000000*x^2 - 3427200000000*x^3 + 5997600000000*x^4
 - 7197120000000*x^5 + 5997600000000*x^6 - 3427200000000*x^7 + 1285200000000*x^8
 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (-44800000000 + 492800000000*x -
 2464000000000*x^2 + 7392000000000*x^3 - 14784000000000*x^4 + 20697600000000*x^5
 - 20697600000000*x^6 + 14784000000000*x^7 - 7392000000000*x^8 + 2464000000000*x
^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 + (-448000000000 + 537600000000
0*x - 29568000000000*x^2 + 98560000000000*x^3 - 221760000000000*x^4 + 3548160000
00000*x^5 - 413952000000000*x^6 + 354816000000000*x^7 - 221760000000000*x^8 + 98
560000000000*x^9 - 29568000000000*x^10 + 5376000000000*x^11 - 448000000000*x^12)
*#1^12 + (2560000000000 + 2560000000000*E^((140*C[1])/9) - 35840000000000*x + 23
2960000000000*x^2 - 931840000000000*x^3 + 2562560000000000*x^4 - 512512000000000
0*x^5 + 7687680000000000*x^6 - 8785920000000000*x^7 + 7687680000000000*x^8 - 512
5120000000000*x^9 + 2562560000000000*x^10 - 931840000000000*x^11 + 2329600000000
00*x^12 - 35840000000000*x^13 + 2560000000000*x^14)*#1^14 & , 11])}, {y[x] -> (3
*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*#1^2 + 
(57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624*x + 3519936
*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x + 19936000*x^2 - 19
936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 127008000*x - 317520
000*x^2 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 - 21168000*x^6)*#1^6 + (
-247680000 + 1733760000*x - 5201280000*x^2 + 8668800000*x^3 - 8668800000*x^4 + 5
201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (-453600000 + 3628800000*
x - 12700800000*x^2 + 25401600000*x^3 - 31752000000*x^4 + 25401600000*x^5 - 1270
0800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (5891200000 - 53020800000*x
 + 212083200000*x^2 - 494860800000*x^3 + 742291200000*x^4 - 742291200000*x^5 + 4
94860800000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5891200000*x^9)*#1^9 + (2
8560000000 - 285600000000*x + 1285200000000*x^2 - 3427200000000*x^3 + 5997600000
000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 3427200000000*x^7 + 1285200000
000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (-44800000000 + 492800000
000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14784000000000*x^4 + 20697600000
000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 - 7392000000000*x^8 + 24640000
00000*x^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 + (-448000000000 + 53760
00000000*x - 29568000000000*x^2 + 98560000000000*x^3 - 221760000000000*x^4 + 354
816000000000*x^5 - 413952000000000*x^6 + 354816000000000*x^7 - 221760000000000*x
^8 + 98560000000000*x^9 - 29568000000000*x^10 + 5376000000000*x^11 - 44800000000
0*x^12)*#1^12 + (2560000000000 + 2560000000000*E^((140*C[1])/9) - 35840000000000
*x + 232960000000000*x^2 - 931840000000000*x^3 + 2562560000000000*x^4 - 51251200
00000000*x^5 + 7687680000000000*x^6 - 8785920000000000*x^7 + 7687680000000000*x^
8 - 5125120000000000*x^9 + 2562560000000000*x^10 - 931840000000000*x^11 + 232960
000000000*x^12 - 35840000000000*x^13 + 2560000000000*x^14)*#1^14 & , 12])}, {y[x
] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 2996*x^2)*
#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 2346624*x + 
3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x + 19936000*x
^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 127008000*x -
 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 - 21168000*x^6)*#
1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 + 8668800000*x^3 - 8668800000*
x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (-453600000 + 3628
800000*x - 12700800000*x^2 + 25401600000*x^3 - 31752000000*x^4 + 25401600000*x^5
 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (5891200000 - 530208
00000*x + 212083200000*x^2 - 494860800000*x^3 + 742291200000*x^4 - 742291200000*
x^5 + 494860800000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5891200000*x^9)*#1
^9 + (28560000000 - 285600000000*x + 1285200000000*x^2 - 3427200000000*x^3 + 599
7600000000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 3427200000000*x^7 + 128
5200000000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (-44800000000 + 49
2800000000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14784000000000*x^4 + 2069
7600000000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 - 7392000000000*x^8 + 2
464000000000*x^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 + (-448000000000 
+ 5376000000000*x - 29568000000000*x^2 + 98560000000000*x^3 - 221760000000000*x^
4 + 354816000000000*x^5 - 413952000000000*x^6 + 354816000000000*x^7 - 2217600000
00000*x^8 + 98560000000000*x^9 - 29568000000000*x^10 + 5376000000000*x^11 - 4480
00000000*x^12)*#1^12 + (2560000000000 + 2560000000000*E^((140*C[1])/9) - 3584000
0000000*x + 232960000000000*x^2 - 931840000000000*x^3 + 2562560000000000*x^4 - 5
125120000000000*x^5 + 7687680000000000*x^6 - 8785920000000000*x^7 + 768768000000
0000*x^8 - 5125120000000000*x^9 + 2562560000000000*x^10 - 931840000000000*x^11 +
 232960000000000*x^12 - 35840000000000*x^13 + 2560000000000*x^14)*#1^14 & , 13])
}, {y[x] -> (3*(-1 + x))/7 - 1/(7*Root[1 + (84 - 84*x)*#1 + (2996 - 5992*x + 299
6*x^2)*#1^2 + (57344 - 172032*x + 172032*x^2 - 57344*x^3)*#1^3 + (586656 - 23466
24*x + 3519936*x^2 - 2346624*x^3 + 586656*x^4)*#1^4 + (1993600 - 9968000*x + 199
36000*x^2 - 19936000*x^3 + 9968000*x^4 - 1993600*x^5)*#1^5 + (-21168000 + 127008
000*x - 317520000*x^2 + 423360000*x^3 - 317520000*x^4 + 127008000*x^5 - 21168000
*x^6)*#1^6 + (-247680000 + 1733760000*x - 5201280000*x^2 + 8668800000*x^3 - 8668
800000*x^4 + 5201280000*x^5 - 1733760000*x^6 + 247680000*x^7)*#1^7 + (-453600000
 + 3628800000*x - 12700800000*x^2 + 25401600000*x^3 - 31752000000*x^4 + 25401600
000*x^5 - 12700800000*x^6 + 3628800000*x^7 - 453600000*x^8)*#1^8 + (5891200000 -
 53020800000*x + 212083200000*x^2 - 494860800000*x^3 + 742291200000*x^4 - 742291
200000*x^5 + 494860800000*x^6 - 212083200000*x^7 + 53020800000*x^8 - 5891200000*
x^9)*#1^9 + (28560000000 - 285600000000*x + 1285200000000*x^2 - 3427200000000*x^
3 + 5997600000000*x^4 - 7197120000000*x^5 + 5997600000000*x^6 - 3427200000000*x^
7 + 1285200000000*x^8 - 285600000000*x^9 + 28560000000*x^10)*#1^10 + (-448000000
00 + 492800000000*x - 2464000000000*x^2 + 7392000000000*x^3 - 14784000000000*x^4
 + 20697600000000*x^5 - 20697600000000*x^6 + 14784000000000*x^7 - 7392000000000*
x^8 + 2464000000000*x^9 - 492800000000*x^10 + 44800000000*x^11)*#1^11 + (-448000
000000 + 5376000000000*x - 29568000000000*x^2 + 98560000000000*x^3 - 22176000000
0000*x^4 + 354816000000000*x^5 - 413952000000000*x^6 + 354816000000000*x^7 - 221
760000000000*x^8 + 98560000000000*x^9 - 29568000000000*x^10 + 5376000000000*x^11
 - 448000000000*x^12)*#1^12 + (2560000000000 + 2560000000000*E^((140*C[1])/9) - 
35840000000000*x + 232960000000000*x^2 - 931840000000000*x^3 + 2562560000000000*
x^4 - 5125120000000000*x^5 + 7687680000000000*x^6 - 8785920000000000*x^7 + 76876
80000000000*x^8 - 5125120000000000*x^9 + 2562560000000000*x^10 - 931840000000000
*x^11 + 232960000000000*x^12 - 35840000000000*x^13 + 2560000000000*x^14)*#1^14 &
 , 14])}}

Maple raw input

dsolve((3-3*x+7*y(x))*diff(y(x),x)+7-7*x+3*y(x) = 0, y(x),'implicit')

Maple raw output

-5/7*ln((1-x-y(x))/(-1+x))-2/7*ln((x-y(x)-1)/(-1+x))-ln(-1+x)-_C1 = 0