4.12.11 axy(x)y(x)=x2+y(x)2

ODE
axy(x)y(x)=x2+y(x)2 ODE Classification

[[_homogeneous, `class A`], _rational, _Bernoulli]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0176333 (sec), leaf count = 68

{{y(x)(a1)c1x2/a+x2a1},{y(x)(a1)c1x2/a+x2a1}}

Maple
cpu = 0.009 (sec), leaf count = 28

{x2a1x2a1_C1+(y(x))2=0} Mathematica raw input

DSolve[a*x*y[x]*y'[x] == x^2 + y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> -(Sqrt[x^2 + (-1 + a)*x^(2/a)*C[1]]/Sqrt[-1 + a])}, {y[x] -> Sqrt[x^2 
+ (-1 + a)*x^(2/a)*C[1]]/Sqrt[-1 + a]}}

Maple raw input

dsolve(a*x*y(x)*diff(y(x),x) = x^2+y(x)^2, y(x),'implicit')

Maple raw output

-x^2/(a-1)-x^(2/a)*_C1+y(x)^2 = 0