4.12.23 x(3xy(x))y(x)=y(x)(xy(x)1)

ODE
x(3xy(x))y(x)=y(x)(xy(x)1) ODE Classification

[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 4.95322 (sec), leaf count = 30

{{y(x)3W(e9c122/31x2/3)x}}

Maple
cpu = 0.011 (sec), leaf count = 21

{ln(x)_C1+xy(x)23ln(xy(x))2=0} Mathematica raw input

DSolve[x*(3 - x*y[x])*y'[x] == y[x]*(-1 + x*y[x]),y[x],x]

Mathematica raw output

{{y[x] -> (-3*ProductLog[E^(-1 + (9*C[1])/2^(2/3))*x^(2/3)])/x}}

Maple raw input

dsolve(x*(3-x*y(x))*diff(y(x),x) = y(x)*(x*y(x)-1), y(x),'implicit')

Maple raw output

ln(x)-_C1+1/2*x*y(x)-3/2*ln(x*y(x)) = 0