4.2.8 y(x)=axn1+bx2n+cy(x)2

ODE
y(x)=axn1+bx2n+cy(x)2 ODE Classification

[_Riccati]

Book solution method
Riccati ODE, Generalized ODE

Mathematica
cpu = 0.224197 (sec), leaf count = 648

{{y(x)xn(bc1(n+1)(n+1)2U((n+1)(b(n+1)2n+ac(n+1))2b((n+1)2)3/2,nn+1,2bcxn+1(n+1)2)+c1(ac(n+1)+b(n+1)2n)U((n+1)(ac(n+1)+b(n+1)2(3n+2))2b((n+1)2)3/2,nn+1+1,2bcxn+1(n+1)2)+b(n+1)(n+1)2(L(n+1)(ac(n+1)b(n+1)2n)2b((n+1)2)3/21n+1(2bcxn+1(n+1)2)+2L(n+1)(ac(n+1)b(n+1)2(3n+2))2b((n+1)2)3/2nn+1(2bcxn+1(n+1)2)))c(n+1)2(c1U((n+1)(b(n+1)2n+ac(n+1))2b((n+1)2)3/2,nn+1,2bcxn+1(n+1)2)+L(n+1)(ac(n+1)b(n+1)2n)2b((n+1)2)3/21n+1(2bcxn+1(n+1)2))}}

Maple
cpu = 0.473 (sec), leaf count = 363

{y(x)=12cx(((2+n)b32icab)M12n+2((2n2)b+ica)1b,(2n+2)1(2ixn+1n+1cb)2b3/2_C1(n+1)W(2n2)b+icab(2n+2),(2n+2)1(2icbxn+1n+1)+(Wia2n+2c1b,(2n+2)1(2ixn+1n+1cb)_C1+Mia2n+2c1b,(2n+2)1(2ixn+1n+1cb))(b32n+ic(2bxn+1+a)b))b32(Wia2n+2c1b,(2n+2)1(2ixn+1n+1cb)_C1+Mia2n+2c1b,(2n+2)1(2ixn+1n+1cb))1} Mathematica raw input

DSolve[y'[x] == a*x^(-1 + n) + b*x^(2*n) + c*y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> -((x^n*(Sqrt[b]*(1 + n)*Sqrt[-(1 + n)^2]*C[1]*HypergeometricU[-((1 + n
)*(a*Sqrt[c]*(1 + n) + Sqrt[b]*n*Sqrt[-(1 + n)^2]))/(2*Sqrt[b]*(-(1 + n)^2)^(3/2
)), n/(1 + n), (2*Sqrt[b]*Sqrt[c]*x^(1 + n))/Sqrt[-(1 + n)^2]] + (a*Sqrt[c]*(1 +
 n) + Sqrt[b]*n*Sqrt[-(1 + n)^2])*C[1]*HypergeometricU[-((1 + n)*(a*Sqrt[c]*(1 +
 n) + Sqrt[b]*Sqrt[-(1 + n)^2]*(2 + 3*n)))/(2*Sqrt[b]*(-(1 + n)^2)^(3/2)), 1 + n
/(1 + n), (2*Sqrt[b]*Sqrt[c]*x^(1 + n))/Sqrt[-(1 + n)^2]] + Sqrt[b]*(1 + n)*Sqrt
[-(1 + n)^2]*(LaguerreL[-((1 + n)*(-(a*Sqrt[c]*(1 + n)) - Sqrt[b]*n*Sqrt[-(1 + n
)^2]))/(2*Sqrt[b]*(-(1 + n)^2)^(3/2)), -(1 + n)^(-1), (2*Sqrt[b]*Sqrt[c]*x^(1 + 
n))/Sqrt[-(1 + n)^2]] + 2*LaguerreL[-((1 + n)*(-(a*Sqrt[c]*(1 + n)) - Sqrt[b]*Sq
rt[-(1 + n)^2]*(2 + 3*n)))/(2*Sqrt[b]*(-(1 + n)^2)^(3/2)), n/(1 + n), (2*Sqrt[b]
*Sqrt[c]*x^(1 + n))/Sqrt[-(1 + n)^2]])))/(Sqrt[c]*(1 + n)^2*(C[1]*Hypergeometric
U[-((1 + n)*(a*Sqrt[c]*(1 + n) + Sqrt[b]*n*Sqrt[-(1 + n)^2]))/(2*Sqrt[b]*(-(1 + 
n)^2)^(3/2)), n/(1 + n), (2*Sqrt[b]*Sqrt[c]*x^(1 + n))/Sqrt[-(1 + n)^2]] + Lague
rreL[-((1 + n)*(-(a*Sqrt[c]*(1 + n)) - Sqrt[b]*n*Sqrt[-(1 + n)^2]))/(2*Sqrt[b]*(
-(1 + n)^2)^(3/2)), -(1 + n)^(-1), (2*Sqrt[b]*Sqrt[c]*x^(1 + n))/Sqrt[-(1 + n)^2
]])))}}

Maple raw input

dsolve(diff(y(x),x) = a*x^(n-1)+b*x^(2*n)+c*y(x)^2, y(x),'implicit')

Maple raw output

y(x) = -1/2*(((2+n)*b^(3/2)-I*c^(1/2)*a*b)*WhittakerM(-((-2*n-2)*b^(1/2)+I*c^(1/
2)*a)/b^(1/2)/(2*n+2),1/(2*n+2),2*I*c^(1/2)*b^(1/2)/(n+1)*x^(n+1))-2*b^(3/2)*_C1
*(n+1)*WhittakerW(-((-2*n-2)*b^(1/2)+I*c^(1/2)*a)/b^(1/2)/(2*n+2),1/(2*n+2),2*I*
c^(1/2)*b^(1/2)/(n+1)*x^(n+1))+(WhittakerW(-I*c^(1/2)/b^(1/2)*a/(2*n+2),1/(2*n+2
),2*I*c^(1/2)*b^(1/2)/(n+1)*x^(n+1))*_C1+WhittakerM(-I*c^(1/2)/b^(1/2)*a/(2*n+2)
,1/(2*n+2),2*I*c^(1/2)*b^(1/2)/(n+1)*x^(n+1)))*(-b^(3/2)*n+I*c^(1/2)*(2*b*x^(n+1
)+a)*b))/b^(3/2)/(WhittakerW(-I*c^(1/2)/b^(1/2)*a/(2*n+2),1/(2*n+2),2*I*c^(1/2)*
b^(1/2)/(n+1)*x^(n+1))*_C1+WhittakerM(-I*c^(1/2)/b^(1/2)*a/(2*n+2),1/(2*n+2),2*I
*c^(1/2)*b^(1/2)/(n+1)*x^(n+1)))/c/x