4.12.30 x(2xy(x)+1)y(x)+y(x)(3xy(x)+2)=0

ODE
x(2xy(x)+1)y(x)+y(x)(3xy(x)+2)=0 ODE Classification

[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

Book solution method
Homogeneous equation, isobaric equation

Mathematica
cpu = 0.0131273 (sec), leaf count = 69

{{y(x)x2(4c1+x)+x3/22x5/2},{y(x)x2(4c1+x)x3/22x5/2}}

Maple
cpu = 0.012 (sec), leaf count = 20

{ln(x)_C1+ln(xy(x)(1+xy(x)))=0} Mathematica raw input

DSolve[y[x]*(2 + 3*x*y[x]) + x*(1 + 2*x*y[x])*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(x^(3/2) + Sqrt[x^2*(x + 4*C[1])])/(2*x^(5/2))}, {y[x] -> (-x^(3/2) +
 Sqrt[x^2*(x + 4*C[1])])/(2*x^(5/2))}}

Maple raw input

dsolve(x*(1+2*x*y(x))*diff(y(x),x)+(2+3*x*y(x))*y(x) = 0, y(x),'implicit')

Maple raw output

ln(x)-_C1+ln(x*y(x)*(1+x*y(x))) = 0