4.12.32 x2(x2y(x))y(x)=2x34xy(x)2+y(x)3

ODE
x2(x2y(x))y(x)=2x34xy(x)2+y(x)3 ODE Classification

[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class C`], _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0656077 (sec), leaf count = 101

{{y(x)2x3e2c1x2(e2c13x2)e2c1+x2},{y(x)e2c1x2(e2c13x2)+2x3e2c1+x2}}

Maple
cpu = 0.03 (sec), leaf count = 48

{12ln(y(x)xx)ln(y(x)2xx)+12ln(x+y(x)x)ln(x)_C1=0} Mathematica raw input

DSolve[x^2*(x - 2*y[x])*y'[x] == 2*x^3 - 4*x*y[x]^2 + y[x]^3,y[x],x]

Mathematica raw output

{{y[x] -> (2*x^3 - Sqrt[E^(2*C[1])*x^2*(E^(2*C[1]) - 3*x^2)])/(E^(2*C[1]) + x^2)
}, {y[x] -> (2*x^3 + Sqrt[E^(2*C[1])*x^2*(E^(2*C[1]) - 3*x^2)])/(E^(2*C[1]) + x^
2)}}

Maple raw input

dsolve(x^2*(x-2*y(x))*diff(y(x),x) = 2*x^3-4*x*y(x)^2+y(x)^3, y(x),'implicit')

Maple raw output

1/2*ln((y(x)-x)/x)-ln((y(x)-2*x)/x)+1/2*ln((x+y(x))/x)-ln(x)-_C1 = 0