4.12.40 3x4+8x3y(x)y(x)6x2y(x)2y(x)4=0

ODE
3x4+8x3y(x)y(x)6x2y(x)2y(x)4=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0286494 (sec), leaf count = 78

{{y(x)x2(e8c1x+3)e8c1x1},{y(x)x2(e8c1x+3)e8c1x1}}

Maple
cpu = 0.024 (sec), leaf count = 41

{ln(3x2+(y(x))2x2)ln(x2+(y(x))2x2)ln(x)_C1=0} Mathematica raw input

DSolve[3*x^4 - 6*x^2*y[x]^2 - y[x]^4 + 8*x^3*y[x]*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(Sqrt[-(x^2*(3 + E^(8*C[1])*x))]/Sqrt[-1 + E^(8*C[1])*x])}, {y[x] -> 
Sqrt[-(x^2*(3 + E^(8*C[1])*x))]/Sqrt[-1 + E^(8*C[1])*x]}}

Maple raw input

dsolve(8*x^3*y(x)*diff(y(x),x)+3*x^4-6*x^2*y(x)^2-y(x)^4 = 0, y(x),'implicit')

Maple raw output

ln((-3*x^2+y(x)^2)/x^2)-ln((x^2+y(x)^2)/x^2)-ln(x)-_C1 = 0