4.12.43 x7y(x)y(x)=5x3y(x)+2(x2+1)

ODE
x7y(x)y(x)=5x3y(x)+2(x2+1) ODE Classification

[_rational, [_Abel, `2nd type`, `class B`]]

Book solution method
Abel ODE, Second kind

Mathematica
cpu = 1.16006 (sec), leaf count = 98

Solve[c1=i((x3y(x)+1)x4y(x)2+1x2+2xy(x)+142F1(12,54;32;(y(x)x3+1)2x2)+2x2)2x(x3y(x)+1)2x214,y(x)]

Maple
cpu = 0.055 (sec), leaf count = 96

{_C1+1(1+x3y(x)x2F1(12,54;32;(1+x3y(x))2x2)x6(y(x))2+2x3y(x)+x2+1x242x)1x6(y(x))2+2x3y(x)+x2+1x24=0} Mathematica raw input

DSolve[x^7*y[x]*y'[x] == 2*(1 + x^2) + 5*x^3*y[x],y[x],x]

Mathematica raw output

Solve[C[1] == ((I/2)*(2*x^2 + Hypergeometric2F1[1/2, 5/4, 3/2, -((1 + x^3*y[x])^
2/x^2)]*(1 + x^3*y[x])*(1 + x^(-2) + 2*x*y[x] + x^4*y[x]^2)^(1/4)))/(x*(-1 - (1 
+ x^3*y[x])^2/x^2)^(1/4)), y[x]]

Maple raw input

dsolve(x^7*y(x)*diff(y(x),x) = 2*x^2+2+5*x^3*y(x), y(x),'implicit')

Maple raw output

_C1+(-(1+x^3*y(x))/x*hypergeom([1/2, 5/4],[3/2],-(1+x^3*y(x))^2/x^2)*((x^6*y(x)^
2+2*x^3*y(x)+x^2+1)/x^2)^(1/4)-2*x)/((x^6*y(x)^2+2*x^3*y(x)+x^2+1)/x^2)^(1/4) = 
0