4.12.45 x2+1(y(x)+1)y(x)=y(x)3

ODE
x2+1(y(x)+1)y(x)=y(x)3 ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.0374284 (sec), leaf count = 63

{{y(x)2c12sinh1(x)+1+12(c1+sinh1(x))},{y(x)2c12sinh1(x)+112(c1+sinh1(x))}}

Maple
cpu = 0.013 (sec), leaf count = 17

{Arcsinh(x)+(y(x))1+12(y(x))2+_C1=0} Mathematica raw input

DSolve[Sqrt[1 + x^2]*(1 + y[x])*y'[x] == y[x]^3,y[x],x]

Mathematica raw output

{{y[x] -> -(1 + Sqrt[1 - 2*ArcSinh[x] - 2*C[1]])/(2*(ArcSinh[x] + C[1]))}, {y[x]
 -> (-1 + Sqrt[1 - 2*ArcSinh[x] - 2*C[1]])/(2*(ArcSinh[x] + C[1]))}}

Maple raw input

dsolve((1+y(x))*diff(y(x),x)*(x^2+1)^(1/2) = y(x)^3, y(x),'implicit')

Maple raw output

arcsinh(x)+1/y(x)+1/2/y(x)^2+_C1 = 0