4.12.47 y(x)2y(x)+x(2y(x))=0

ODE
y(x)2y(x)+x(2y(x))=0 ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 26.9186 (sec), leaf count = 38

{{y(x)InverseFunction[#122+2#1+4log(#12)6&][c1+x22]}}

Maple
cpu = 0.008 (sec), leaf count = 27

{x22(y(x))222y(x)4ln(y(x)2)+_C1=0} Mathematica raw input

DSolve[x*(2 - y[x]) + y[x]^2*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[-6 + 4*Log[-2 + #1] + 2*#1 + #1^2/2 & ][x^2/2 + C[1]]}
}

Maple raw input

dsolve(y(x)^2*diff(y(x),x)+x*(2-y(x)) = 0, y(x),'implicit')

Maple raw output

1/2*x^2-1/2*y(x)^2-2*y(x)-4*ln(y(x)-2)+_C1 = 0