[_exact, _rational]
Book solution method
Exact equation
Mathematica ✓
cpu = 0.0164503 (sec), leaf count = 326
Maple ✓
cpu = 0.013 (sec), leaf count = 20
DSolve[(x - y[x]^2)*y'[x] == x^2 - y[x],y[x],x]
Mathematica raw output
{{y[x] -> -((2*x + 2^(1/3)*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1
])])^(2/3))/(2^(2/3)*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])])^(
1/3)))}, {y[x] -> ((2 + (2*I)*Sqrt[3])*x + 2^(1/3)*(1 - I*Sqrt[3])*(x^3 + 3*C[1]
+ Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])])^(2/3))/(2*2^(2/3)*(x^3 + 3*C[1] + S
qrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])])^(1/3))}, {y[x] -> ((2 - (2*I)*Sqrt[3])*
x + 2^(1/3)*(1 + I*Sqrt[3])*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[
1])])^(2/3))/(2*2^(2/3)*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])]
)^(1/3))}}
Maple raw input
dsolve((x-y(x)^2)*diff(y(x),x) = x^2-y(x), y(x),'implicit')
Maple raw output
-1/3*x^3+x*y(x)-1/3*y(x)^3+_C1 = 0