4.12.50 (xy(x)2)y(x)=x2y(x)

ODE
(xy(x)2)y(x)=x2y(x) ODE Classification

[_exact, _rational]

Book solution method
Exact equation

Mathematica
cpu = 0.0164503 (sec), leaf count = 326

{{y(x)23((6c14)x3+9c12+x6+3c1+x3)2/3+2x22/3(6c14)x3+9c12+x6+3c1+x33},{y(x)23(1i3)((6c14)x3+9c12+x6+3c1+x3)2/3+(2+2i3)x2 22/3(6c14)x3+9c12+x6+3c1+x33},{y(x)23(1+i3)((6c14)x3+9c12+x6+3c1+x3)2/3+(22i3)x2 22/3(6c14)x3+9c12+x6+3c1+x33}}

Maple
cpu = 0.013 (sec), leaf count = 20

{x33+xy(x)(y(x))33+_C1=0} Mathematica raw input

DSolve[(x - y[x]^2)*y'[x] == x^2 - y[x],y[x],x]

Mathematica raw output

{{y[x] -> -((2*x + 2^(1/3)*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1
])])^(2/3))/(2^(2/3)*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])])^(
1/3)))}, {y[x] -> ((2 + (2*I)*Sqrt[3])*x + 2^(1/3)*(1 - I*Sqrt[3])*(x^3 + 3*C[1]
 + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])])^(2/3))/(2*2^(2/3)*(x^3 + 3*C[1] + S
qrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])])^(1/3))}, {y[x] -> ((2 - (2*I)*Sqrt[3])*
x + 2^(1/3)*(1 + I*Sqrt[3])*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[
1])])^(2/3))/(2*2^(2/3)*(x^3 + 3*C[1] + Sqrt[x^6 + 9*C[1]^2 + x^3*(-4 + 6*C[1])]
)^(1/3))}}

Maple raw input

dsolve((x-y(x)^2)*diff(y(x),x) = x^2-y(x), y(x),'implicit')

Maple raw output

-1/3*x^3+x*y(x)-1/3*y(x)^3+_C1 = 0