4.13.2 \(\left (x^2+y(x)^2\right ) y'(x)=x y(x)\)

ODE
\[ \left (x^2+y(x)^2\right ) y'(x)=x y(x) \] ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 1.37322 (sec), leaf count = 44

\[\left \{\left \{y(x)\to -\frac {x}{\sqrt {W\left (e^{-2 c_1} x^2\right )}}\right \},\left \{y(x)\to \frac {x}{\sqrt {W\left (e^{-2 c_1} x^2\right )}}\right \}\right \}\]

Maple
cpu = 0.015 (sec), leaf count = 29

\[ \left \{ -\ln \left ( {\frac {y \left ( x \right ) }{x}} \right ) +{\frac {{x}^{2}}{2\, \left ( y \left ( x \right ) \right ) ^{2}}}-\ln \left ( x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[(x^2 + y[x]^2)*y'[x] == x*y[x],y[x],x]

Mathematica raw output

{{y[x] -> -(x/Sqrt[ProductLog[x^2/E^(2*C[1])]])}, {y[x] -> x/Sqrt[ProductLog[x^2
/E^(2*C[1])]]}}

Maple raw input

dsolve((x^2+y(x)^2)*diff(y(x),x) = x*y(x), y(x),'implicit')

Maple raw output

-ln(y(x)/x)+1/2*x^2/y(x)^2-ln(x)-_C1 = 0