4.13.13 (y(x)2+2y(x)+x)y(x)+y(x)2(y(x)+x)2+y(x)(y(x)+1)=0

ODE
(y(x)2+2y(x)+x)y(x)+y(x)2(y(x)+x)2+y(x)(y(x)+1)=0 ODE Classification

[_rational]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 3.35184 (sec), leaf count = 106

{{y(x)(c1xx2+1)2+4(xc1)c1x+x212(xc1)},{y(x)(c1xx2+1)2+4(xc1)+c1xx2+12(xc1)}}

Maple
cpu = 0.183 (sec), leaf count = 25

{_C1+(x+y(x))1x+1(x+y(x))y(x)=0} Mathematica raw input

DSolve[y[x]*(1 + y[x]) + y[x]^2*(x + y[x])^2 + (x + 2*y[x] + y[x]^2)*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(-1 + x^2 - x*C[1] + Sqrt[4*(x - C[1]) + (1 - x^2 + x*C[1])^2])/(2*(x
 - C[1]))}, {y[x] -> (1 - x^2 + x*C[1] + Sqrt[4*(x - C[1]) + (1 - x^2 + x*C[1])^
2])/(2*(x - C[1]))}}

Maple raw input

dsolve((x+2*y(x)+y(x)^2)*diff(y(x),x)+y(x)*(1+y(x))+(x+y(x))^2*y(x)^2 = 0, y(x),'implicit')

Maple raw output

_C1+1/(x+y(x))-x+1/y(x)/(x+y(x)) = 0