[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
Equation linear in the variables,
Mathematica ✓
cpu = 0.252843 (sec), leaf count = 35
Maple ✓
cpu = 0.02 (sec), leaf count = 68
DSolve[(x + y[x])^2*y'[x] == x^2 - 2*x*y[x] + 5*y[x]^2,y[x],x]
Mathematica raw output
Solve[Log[x] + Log[-1 + y[x]/x] + (2*x*(x - 2*y[x]))/(x - y[x])^2 == C[1], y[x]]
Maple raw input
dsolve((x+y(x))^2*diff(y(x),x) = x^2-2*x*y(x)+5*y(x)^2, y(x),'implicit')
Maple raw output
((x-y(x))^2*ln((y(x)-x)/x)+(-_C1+ln(x))*y(x)^2+2*x*(_C1-ln(x)-2)*y(x)-x^2*(_C1-l
n(x)-2))/(x-y(x))^2 = 0