4.13.22 (y(x)+x)2y(x)=x22xy(x)+5y(x)2

ODE
(y(x)+x)2y(x)=x22xy(x)+5y(x)2 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Equation linear in the variables, y(x)=f(X1X2)

Mathematica
cpu = 0.252843 (sec), leaf count = 35

Solve[2x(x2y(x))(xy(x))2+log(y(x)x1)+log(x)=c1,y(x)]

Maple
cpu = 0.02 (sec), leaf count = 68

{1(xy(x))2((xy(x))2ln(y(x)xx)+(_C1+ln(x))(y(x))2+2x(_C1ln(x)2)y(x)x2(_C1ln(x)2))=0} Mathematica raw input

DSolve[(x + y[x])^2*y'[x] == x^2 - 2*x*y[x] + 5*y[x]^2,y[x],x]

Mathematica raw output

Solve[Log[x] + Log[-1 + y[x]/x] + (2*x*(x - 2*y[x]))/(x - y[x])^2 == C[1], y[x]]

Maple raw input

dsolve((x+y(x))^2*diff(y(x),x) = x^2-2*x*y(x)+5*y(x)^2, y(x),'implicit')

Maple raw output

((x-y(x))^2*ln((y(x)-x)/x)+(-_C1+ln(x))*y(x)^2+2*x*(_C1-ln(x)-2)*y(x)-x^2*(_C1-l
n(x)-2))/(x-y(x))^2 = 0