4.13.24 (2x2+4xy(x)y(x)2)y(x)=x24xy(x)2y(x)2

ODE
(2x2+4xy(x)y(x)2)y(x)=x24xy(x)2y(x)2 ODE Classification

[[_homogeneous, `class A`], _exact, _rational, _dAlembert]

Book solution method
Exact equation

Mathematica
cpu = 0.0341975 (sec), leaf count = 381

{{y(x)54e3c1x3+e6c1135x6+e3c1+27x3323+623x254e3c1x3+e6c1135x6+e3c1+27x33+2x},{y(x)i(3+i)54e3c1x3+e6c1135x6+e3c1+27x33223323(1+i3)x254e3c1x3+e6c1135x6+e3c1+27x33+2x},{y(x)(1+i3)54e3c1x3+e6c1135x6+e3c1+27x33223+3i23(3+i)x254e3c1x3+e6c1135x6+e3c1+27x33+2x}}

Maple
cpu = 0.016 (sec), leaf count = 35

{13ln((x+y(x))(x27xy(x)+(y(x))2)x3)ln(x)_C1=0} Mathematica raw input

DSolve[(2*x^2 + 4*x*y[x] - y[x]^2)*y'[x] == x^2 - 4*x*y[x] - 2*y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> 2*x + (6*2^(1/3)*x^2)/(E^(3*C[1]) + 27*x^3 + Sqrt[E^(6*C[1]) + 54*E^(3
*C[1])*x^3 - 135*x^6])^(1/3) + (E^(3*C[1]) + 27*x^3 + Sqrt[E^(6*C[1]) + 54*E^(3*
C[1])*x^3 - 135*x^6])^(1/3)/2^(1/3)}, {y[x] -> 2*x - (3*2^(1/3)*(1 + I*Sqrt[3])*
x^2)/(E^(3*C[1]) + 27*x^3 + Sqrt[E^(6*C[1]) + 54*E^(3*C[1])*x^3 - 135*x^6])^(1/3
) + ((I/2)*(I + Sqrt[3])*(E^(3*C[1]) + 27*x^3 + Sqrt[E^(6*C[1]) + 54*E^(3*C[1])*
x^3 - 135*x^6])^(1/3))/2^(1/3)}, {y[x] -> 2*x + ((3*I)*2^(1/3)*(I + Sqrt[3])*x^2
)/(E^(3*C[1]) + 27*x^3 + Sqrt[E^(6*C[1]) + 54*E^(3*C[1])*x^3 - 135*x^6])^(1/3) -
 ((1 + I*Sqrt[3])*(E^(3*C[1]) + 27*x^3 + Sqrt[E^(6*C[1]) + 54*E^(3*C[1])*x^3 - 1
35*x^6])^(1/3))/(2*2^(1/3))}}

Maple raw input

dsolve((2*x^2+4*x*y(x)-y(x)^2)*diff(y(x),x) = x^2-4*x*y(x)-2*y(x)^2, y(x),'implicit')

Maple raw output

-1/3*ln((x+y(x))*(x^2-7*x*y(x)+y(x)^2)/x^3)-ln(x)-_C1 = 0