ODE
\[ 4 x^3+9 x^2 y(x)+\left (3 x^3+6 x^2 y(x)-3 x y(x)^2+20 y(x)^3\right ) y'(x)+6 x y(x)^2-y(x)^3=0 \] ODE Classification
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
Book solution method
Exact equation
Mathematica ✓
cpu = 0.17773 (sec), leaf count = 2201
\[\left \{\left \{y(x)\to \frac {x}{20}+\frac {1}{2} \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}-\frac {1}{2} \sqrt {-\frac {659 x^3}{500 \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}}-\frac {39 x^2}{50}-\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (10 e^{c_1}-13 x^4\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{20}+\frac {1}{2} \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}+\frac {1}{2} \sqrt {-\frac {659 x^3}{500 \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}}-\frac {39 x^2}{50}-\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (10 e^{c_1}-13 x^4\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{20}-\frac {1}{2} \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}-\frac {1}{2} \sqrt {\frac {659 x^3}{500 \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}}-\frac {39 x^2}{50}-\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (10 e^{c_1}-13 x^4\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{20}-\frac {1}{2} \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}+\frac {1}{2} \sqrt {\frac {659 x^3}{500 \sqrt {-\frac {39 x^2}{100}+\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (13 x^4-10 e^{c_1}\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}}-\frac {39 x^2}{50}-\frac {\sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}{5 \sqrt [3]{2} 3^{2/3}}+\frac {2 \sqrt [3]{\frac {2}{3}} \left (10 e^{c_1}-13 x^4\right )}{5 \sqrt [3]{99 x^6+351 e^{c_1} x^2+\sqrt {3} \sqrt {-67037 x^{12}+185406 e^{c_1} x^8-83733 e^{2 c_1} x^4+32000 e^{3 c_1}}}}}\right \}\right \}\]
Maple ✓
cpu = 0.017 (sec), leaf count = 51
\[ \left \{ -{\frac {1}{4}\ln \left ( {\frac {{x}^{4}+3\,{x}^{3}y \left ( x \right ) +3\,{x}^{2} \left ( y \left ( x \right ) \right ) ^{2}-x \left ( y \left ( x \right ) \right ) ^{3}+5\, \left ( y \left ( x \right ) \right ) ^{4}}{{x}^{4}}} \right ) }-\ln \left ( x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[4*x^3 + 9*x^2*y[x] + 6*x*y[x]^2 - y[x]^3 + (3*x^3 + 6*x^2*y[x] - 3*x*y[x]^2 + 20*y[x]^3)*y'[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> x/20 + Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))]/2 - Sqrt[(-39*x^2)/50 + (2*(2/3)^(1/3)*(10*E^C[1] - 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) - (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3)) - (659*x^3)/(500*Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))])]/2}, {y[x] -> x/20 + Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))]/2 + Sqrt[(-39*x^2)/50 + (2*(2/3)^(1/3)*(10*E^C[1] - 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) - (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3)) - (659*x^3)/(500*Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))])]/2}, {y[x] -> x/20 - Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))]/2 - Sqrt[(-39*x^2)/50 + (2*(2/3)^(1/3)*(10*E^C[1] - 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) - (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3)) + (659*x^3)/(500*Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))])]/2}, {y[x] -> x/20 - Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))]/2 + Sqrt[(-39*x^2)/50 + (2*(2/3)^(1/3)*(10*E^C[1] - 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) - (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3)) + (659*x^3)/(500*Sqrt[(-39*x^2)/100 + (2*(2/3)^(1/3)*(-10*E^C[1] + 13*x^4))/(5*(351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)) + (351*E^C[1]*x^2 + 99*x^6 + Sqrt[3]*Sqrt[32000*E^(3*C[1]) - 83733*E^(2*C[1])*x^4 + 185406*E^C[1]*x^8 - 67037*x^12])^(1/3)/(5*2^(1/3)*3^(2/3))])]/2}}
Maple raw input
dsolve((3*x^3+6*x^2*y(x)-3*x*y(x)^2+20*y(x)^3)*diff(y(x),x)+4*x^3+9*x^2*y(x)+6*x*y(x)^2-y(x)^3 = 0, y(x),'implicit')
Maple raw output
-1/4*ln((x^4+3*x^3*y(x)+3*x^2*y(x)^2-x*y(x)^3+5*y(x)^4)/x^4)-ln(x)-_C1 = 0