4.15.5 (10x2y(x)3+3y(x)2+2)y(x)=x(5y(x)4+1)

ODE
(10x2y(x)3+3y(x)2+2)y(x)=x(5y(x)4+1) ODE Classification

[_exact, _rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

Book solution method
Exact equation

Mathematica
cpu = 0.199571 (sec), leaf count = 2097

{{y(x)3563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x2+3563189x218c1+327(21x22c1)216(5x410c1x22)33x4+10 62/3(5x410c1x22)x4189x218c1+327(21x22c1)216(5x410c1x22)336x2+63(100x4+1)563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x6x2330x2},{y(x)3563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x2+3563189x218c1+327(21x22c1)216(5x410c1x22)33x4+10 62/3(5x410c1x22)x4189x218c1+327(21x22c1)216(5x410c1x22)336x2+63(100x4+1)563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x6x2+330x2},{y(x)3563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x23563189x218c1+327(21x22c1)216(5x410c1x22)33x410 62/3(5x410c1x22)x4189x218c1+327(21x22c1)216(5x410c1x22)33+6x2+63(100x4+1)563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x6x2+330x2},{y(x)3563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x2+3563189x218c1+327(21x22c1)216(5x410c1x22)33x410 62/3(5x410c1x22)x4189x218c1+327(21x22c1)216(5x410c1x22)33+6x2+63(100x4+1)563189x218c1+327(21x22c1)216(5x410c1x22)33x2+10 62/3(5x410c1x22)x2189x218c1+327(21x22c1)216(5x410c1x22)33+3x4x6x2+330x2}}

Maple
cpu = 0.021 (sec), leaf count = 27

{5x2(y(x))42+(y(x))3x22+2y(x)+_C1=0} Mathematica raw input

DSolve[(2 + 3*y[x]^2 - 10*x^2*y[x]^3)*y'[x] == x*(1 + 5*y[x]^4),y[x],x]

Mathematica raw output

{{y[x] -> -(-3 + Sqrt[3]*x^2*Sqrt[(3 + (10*6^(2/3)*x^2*(-2 + 5*x^4 - 10*x^2*C[1]
))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 1
0*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^2*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x
^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3))/x^4] + Sqrt[3]*x^2*Sqr
t[-((-6*x^2 + (10*6^(2/3)*x^4*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1] + S
qrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) + 5
*6^(1/3)*x^4*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 +
 5*x^4 - 10*x^2*C[1])^3])^(1/3) + (6*Sqrt[3]*(1 + 100*x^4))/Sqrt[(3 + (10*6^(2/3
)*x^2*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 -
 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^2*(189*x^2 - 
18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3]
)^(1/3))/x^4])/x^6)])/(30*x^2)}, {y[x] -> (3 - Sqrt[3]*x^2*Sqrt[(3 + (10*6^(2/3)
*x^2*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 
2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^2*(189*x^2 - 1
8*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])
^(1/3))/x^4] + Sqrt[3]*x^2*Sqrt[-((-6*x^2 + (10*6^(2/3)*x^4*(-2 + 5*x^4 - 10*x^2
*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^
4 - 10*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^4*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*
(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) + (6*Sqrt[3]*(1 + 
100*x^4))/Sqrt[(3 + (10*6^(2/3)*x^2*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[
1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/
3) + 5*6^(1/3)*x^2*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16
*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3))/x^4])/x^6)])/(30*x^2)}, {y[x] -> (3 + Sqr
t[3]*x^2*Sqrt[(3 + (10*6^(2/3)*x^2*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1
] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3
) + 5*6^(1/3)*x^2*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*
(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3))/x^4] - Sqrt[3]*x^2*Sqrt[(6*x^2 - (10*6^(2/
3)*x^4*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 
- 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) - 5*6^(1/3)*x^4*(189*x^2 -
 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3
])^(1/3) + (6*Sqrt[3]*(1 + 100*x^4))/Sqrt[(3 + (10*6^(2/3)*x^2*(-2 + 5*x^4 - 10*
x^2*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5
*x^4 - 10*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^2*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[
27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3))/x^4])/x^6])/(3
0*x^2)}, {y[x] -> (3 + Sqrt[3]*x^2*Sqrt[(3 + (10*6^(2/3)*x^2*(-2 + 5*x^4 - 10*x^
2*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x
^4 - 10*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^2*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27
*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3))/x^4] + Sqrt[3]*x
^2*Sqrt[(6*x^2 - (10*6^(2/3)*x^4*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1] 
+ Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) 
- 5*6^(1/3)*x^4*(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-
2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) + (6*Sqrt[3]*(1 + 100*x^4))/Sqrt[(3 + (10*6^(
2/3)*x^2*(-2 + 5*x^4 - 10*x^2*C[1]))/(189*x^2 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^
2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])^3])^(1/3) + 5*6^(1/3)*x^2*(189*x^2
 - 18*C[1] + Sqrt[3]*Sqrt[27*(21*x^2 - 2*C[1])^2 - 16*(-2 + 5*x^4 - 10*x^2*C[1])
^3])^(1/3))/x^4])/x^6])/(30*x^2)}}

Maple raw input

dsolve((2-10*x^2*y(x)^3+3*y(x)^2)*diff(y(x),x) = x*(1+5*y(x)^4), y(x),'implicit')

Maple raw output

-5/2*x^2*y(x)^4+y(x)^3-1/2*x^2+2*y(x)+_C1 = 0