4.15.9 (x2y(x)4)y(x)=xy(x)

ODE
(x2y(x)4)y(x)=xy(x) ODE Classification

[[_homogeneous, `class G`], _rational]

Book solution method
Change of Variable, new independent variable

Mathematica
cpu = 0.639934 (sec), leaf count = 117

{{y(x)c12x2c1},{y(x)c12x2c1},{y(x)c12x2c1},{y(x)c12x2c1}}

Maple
cpu = 0.017 (sec), leaf count = 31

{ln(x)_C1+ln((y(x))4+x2x2)2ln(y(x)x)=0} Mathematica raw input

DSolve[(x^2 - y[x]^4)*y'[x] == x*y[x],y[x],x]

Mathematica raw output

{{y[x] -> -Sqrt[-C[1] - Sqrt[-x^2 + C[1]^2]]}, {y[x] -> Sqrt[-C[1] - Sqrt[-x^2 +
 C[1]^2]]}, {y[x] -> -Sqrt[-C[1] + Sqrt[-x^2 + C[1]^2]]}, {y[x] -> Sqrt[-C[1] + 
Sqrt[-x^2 + C[1]^2]]}}

Maple raw input

dsolve((x^2-y(x)^4)*diff(y(x),x) = x*y(x), y(x),'implicit')

Maple raw output

ln(x)-_C1+ln((y(x)^4+x^2)/x^2)-2*ln(y(x)/x^(1/2)) = 0