4.2.21 y(x)=y(x)(a+by(x)cos(kx))

ODE
y(x)=y(x)(a+by(x)cos(kx)) ODE Classification

[_Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.0492755 (sec), leaf count = 57

{{y(x)(a2+k2)eaxc1((a2+k2))+bkeaxsin(kx)+abeaxcos(kx)}}

Maple
cpu = 0.016 (sec), leaf count = 54

{(y(x))1+beax(cos(kx)a+ksin(kx))_C1(a2+k2)(a2+k2)eax=0} Mathematica raw input

DSolve[y'[x] == y[x]*(a + b*Cos[k*x]*y[x]),y[x],x]

Mathematica raw output

{{y[x] -> -((E^(a*x)*(a^2 + k^2))/(-((a^2 + k^2)*C[1]) + a*b*E^(a*x)*Cos[k*x] + 
b*E^(a*x)*k*Sin[k*x]))}}

Maple raw input

dsolve(diff(y(x),x) = (a+b*y(x)*cos(k*x))*y(x), y(x),'implicit')

Maple raw output

1/y(x)+(b*exp(a*x)*(cos(k*x)*a+k*sin(k*x))-_C1*(a^2+k^2))/(a^2+k^2)/exp(a*x) = 0