4.15.13 (2y(x)4xy(x)3+4x)y(x)=y(x)(y(x)3+2)

ODE
(2y(x)4xy(x)3+4x)y(x)=y(x)(y(x)3+2) ODE Classification

[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.150154 (sec), leaf count = 2021

{{y(x)x412x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)3312x22+(x2+4c1)x4x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33+4c1354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)3332323(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33},{y(x)x412x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33+12x22+(x2+4c1)x4x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33+4c1354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)3332323(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33},{y(x)x4+12x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)3312x22(x2+4c1)x4x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33+4c1354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)3332323(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33},{y(x)x4+12x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33+12x22(x2+4c1)x4x24+2c13+54x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33323+23(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33+4c1354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)3332323(c12+24x)354x3+144c1x2c13+(54x3+144c1x2c13)24(c12+24x)33}}

Maple
cpu = 0.016 (sec), leaf count = 27

{x((y(x))2+_C1)(y(x))22+(y(x))3=0} Mathematica raw input

DSolve[(4*x - x*y[x]^3 - 2*y[x]^4)*y'[x] == y[x]*(2 + y[x]^3),y[x],x]

Mathematica raw output

{{y[x] -> -x/4 - Sqrt[x^2/4 + (2*C[1])/3 + (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 
+ 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C
[1]^3)^2])^(1/3)) + (54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 
+ (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(1/3))]/2 - Sqrt[x^2/2 + (4*C[
1])/3 - (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(
24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) - (54*x^3 + 144*x
*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^
2])^(1/3)/(3*2^(1/3)) + (x*(x^2 + 4*C[1]))/(4*Sqrt[x^2/4 + (2*C[1])/3 + (2^(1/3)
*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3
 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) + (54*x^3 + 144*x*C[1] - 2*C[1]^3
 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(
1/3))])]/2}, {y[x] -> -x/4 - Sqrt[x^2/4 + (2*C[1])/3 + (2^(1/3)*(24*x + C[1]^2))
/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*
x*C[1] - 2*C[1]^3)^2])^(1/3)) + (54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x 
+ C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(1/3))]/2 + Sqrt[x
^2/2 + (4*C[1])/3 - (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3
 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) - (54
*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] 
- 2*C[1]^3)^2])^(1/3)/(3*2^(1/3)) + (x*(x^2 + 4*C[1]))/(4*Sqrt[x^2/4 + (2*C[1])/
3 + (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x
 + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) + (54*x^3 + 144*x*C[1
] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^
(1/3)/(3*2^(1/3))])]/2}, {y[x] -> -x/4 + Sqrt[x^2/4 + (2*C[1])/3 + (2^(1/3)*(24*
x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (5
4*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) + (54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sq
rt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(1/3))
]/2 - Sqrt[x^2/2 + (4*C[1])/3 - (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1
] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^
(1/3)) - (54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 +
 144*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(1/3)) - (x*(x^2 + 4*C[1]))/(4*Sqrt[x^2/4
 + (2*C[1])/3 + (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + S
qrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) + (54*x^3
 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*
C[1]^3)^2])^(1/3)/(3*2^(1/3))])]/2}, {y[x] -> -x/4 + Sqrt[x^2/4 + (2*C[1])/3 + (
2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[
1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)) + (54*x^3 + 144*x*C[1] - 2
*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)
/(3*2^(1/3))]/2 + Sqrt[x^2/2 + (4*C[1])/3 - (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3
 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*
C[1]^3)^2])^(1/3)) - (54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3
 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(1/3)) - (x*(x^2 + 4*C[1]))/(
4*Sqrt[x^2/4 + (2*C[1])/3 + (2^(1/3)*(24*x + C[1]^2))/(3*(54*x^3 + 144*x*C[1] - 
2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144*x*C[1] - 2*C[1]^3)^2])^(1/3
)) + (54*x^3 + 144*x*C[1] - 2*C[1]^3 + Sqrt[-4*(24*x + C[1]^2)^3 + (54*x^3 + 144
*x*C[1] - 2*C[1]^3)^2])^(1/3)/(3*2^(1/3))])]/2}}

Maple raw input

dsolve((4*x-x*y(x)^3-2*y(x)^4)*diff(y(x),x) = (2+y(x)^3)*y(x), y(x),'implicit')

Maple raw output

x-(-y(x)^2+_C1)/(2+y(x)^3)*y(x)^2 = 0