[_rational]
Book solution method
Exact equation, integrating factor
Mathematica ✓
cpu = 0.422075 (sec), leaf count = 584
Maple ✓
cpu = 0.118 (sec), leaf count = 22
DSolve[y[x]*(1 + y[x]^4) + (x + 2*y[x] + 2*x^2*y[x]^3 + x*y[x]^4)*y'[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (2*C[1] + (2*2^(1/3)*C[1]*(3*x^2 + C[1]))/(2*C[1]^3 + 9*x^2*(3 + C[1]^
2) + 3*Sqrt[3]*Sqrt[4*x^2*C[1]^3 - 4*x^6*C[1]^3 + x^4*(27 + 18*C[1]^2 - C[1]^4)]
)^(1/3) + 2^(2/3)*(2*C[1]^3 + 9*x^2*(3 + C[1]^2) + 3*Sqrt[3]*Sqrt[4*x^2*C[1]^3 -
4*x^6*C[1]^3 + x^4*(27 + 18*C[1]^2 - C[1]^4)])^(1/3))/(6*x)}, {y[x] -> (4*C[1]
- ((2*I)*2^(1/3)*(-I + Sqrt[3])*C[1]*(3*x^2 + C[1]))/(2*C[1]^3 + 9*x^2*(3 + C[1]
^2) + 3*Sqrt[3]*Sqrt[4*x^2*C[1]^3 - 4*x^6*C[1]^3 + x^4*(27 + 18*C[1]^2 - C[1]^4)
])^(1/3) + I*2^(2/3)*(I + Sqrt[3])*(2*C[1]^3 + 9*x^2*(3 + C[1]^2) + 3*Sqrt[3]*Sq
rt[4*x^2*C[1]^3 - 4*x^6*C[1]^3 + x^4*(27 + 18*C[1]^2 - C[1]^4)])^(1/3))/(12*x)},
{y[x] -> (4*C[1] + ((2*I)*2^(1/3)*(I + Sqrt[3])*C[1]*(3*x^2 + C[1]))/(2*C[1]^3
+ 9*x^2*(3 + C[1]^2) + 3*Sqrt[3]*Sqrt[4*x^2*C[1]^3 - 4*x^6*C[1]^3 + x^4*(27 + 18
*C[1]^2 - C[1]^4)])^(1/3) - 2^(2/3)*(1 + I*Sqrt[3])*(2*C[1]^3 + 9*x^2*(3 + C[1]^
2) + 3*Sqrt[3]*Sqrt[4*x^2*C[1]^3 - 4*x^6*C[1]^3 + x^4*(27 + 18*C[1]^2 - C[1]^4)]
)^(1/3))/(12*x)}}
Maple raw input
dsolve((x+2*y(x)+2*x^2*y(x)^3+x*y(x)^4)*diff(y(x),x)+(1+y(x)^4)*y(x) = 0, y(x),'implicit')
Maple raw output
_C1+(x+y(x))*y(x)/(x*y(x)^3-1) = 0