[_rational]
Book solution method
Exact equation, integrating factor
Mathematica ✓
cpu = 0.0246112 (sec), leaf count = 253
Maple ✓
cpu = 0.172 (sec), leaf count = 25
DSolve[y[x]^3*(-1 + 3*x^5*y[x]^5) + x^3*(1 + 5*x^3*y[x]^7)*y'[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 1]}, {y[x] -> Root[
-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 2]}, {y[x] -> Root[-x^2 + (1 - 2*x
^2*C[1])*#1^2 + 2*x^5*#1^7 & , 3]}, {y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 +
2*x^5*#1^7 & , 4]}, {y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & ,
5]}, {y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 6]}, {y[x] ->
Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 7]}}
Maple raw input
dsolve(x^3*(1+5*x^3*y(x)^7)*diff(y(x),x)+(3*x^5*y(x)^5-1)*y(x)^3 = 0, y(x),'implicit')
Maple raw output
-x^3*y(x)^5-1/2/x^2+1/2/y(x)^2+_C1 = 0