4.15.20 y(x)3(3x5y(x)51)+x3(5x3y(x)7+1)y(x)=0

ODE
y(x)3(3x5y(x)51)+x3(5x3y(x)7+1)y(x)=0 ODE Classification

[_rational]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.0246112 (sec), leaf count = 253

{{y(x)Root[2#17x5+#12(12c1x2)x2&,1]},{y(x)Root[2#17x5+#12(12c1x2)x2&,2]},{y(x)Root[2#17x5+#12(12c1x2)x2&,3]},{y(x)Root[2#17x5+#12(12c1x2)x2&,4]},{y(x)Root[2#17x5+#12(12c1x2)x2&,5]},{y(x)Root[2#17x5+#12(12c1x2)x2&,6]},{y(x)Root[2#17x5+#12(12c1x2)x2&,7]}}

Maple
cpu = 0.172 (sec), leaf count = 25

{x3(y(x))512x2+12(y(x))2+_C1=0} Mathematica raw input

DSolve[y[x]^3*(-1 + 3*x^5*y[x]^5) + x^3*(1 + 5*x^3*y[x]^7)*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 1]}, {y[x] -> Root[
-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 2]}, {y[x] -> Root[-x^2 + (1 - 2*x
^2*C[1])*#1^2 + 2*x^5*#1^7 & , 3]}, {y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 +
 2*x^5*#1^7 & , 4]}, {y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & ,
 5]}, {y[x] -> Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 6]}, {y[x] -> 
Root[-x^2 + (1 - 2*x^2*C[1])*#1^2 + 2*x^5*#1^7 & , 7]}}

Maple raw input

dsolve(x^3*(1+5*x^3*y(x)^7)*diff(y(x),x)+(3*x^5*y(x)^5-1)*y(x)^3 = 0, y(x),'implicit')

Maple raw output

-x^3*y(x)^5-1/2/x^2+1/2/y(x)^2+_C1 = 0