4.15.24 f(x)y(x)my(x)+g(x)y(x)m+1+h(x)y(x)n=0

ODE
f(x)y(x)my(x)+g(x)y(x)m+1+h(x)y(x)n=0 ODE Classification

[_Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 1.04416 (sec), leaf count = 93

{{y(x)(exp((mn+1)1xg(K[1])f(K[1])dK[1])((mn+1)1xh(K[2])exp((mn+1)1K[2]g(K[1])f(K[1])dK[1])f(K[2])dK[2]+c1))1mn+1}}

Maple
cpu = 0.035 (sec), leaf count = 70

{(y(x))mn+1+1(h(x)(mn+1)f(x)eg(x)(mn+1)f(x)dxdx_C1)(eg(x)(mn+1)f(x)dx)1=0} Mathematica raw input

DSolve[g[x]*y[x]^(1 + m) + h[x]*y[x]^n + f[x]*y[x]^m*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (E^((1 + m - n)*Integrate[-(g[K[1]]/f[K[1]]), {K[1], 1, x}])*(C[1] + (
1 + m - n)*Integrate[-(h[K[2]]/(E^((1 + m - n)*Integrate[-(g[K[1]]/f[K[1]]), {K[
1], 1, K[2]}])*f[K[2]])), {K[2], 1, x}]))^(1 + m - n)^(-1)}}

Maple raw input

dsolve(f(x)*y(x)^m*diff(y(x),x)+g(x)*y(x)^(m+1)+h(x)*y(x)^n = 0, y(x),'implicit')

Maple raw output

y(x)^(m-n+1)+(-Int(-exp(Int(1/f(x)*g(x)*(m-n+1),x))*h(x)/f(x)*(m-n+1),x)-_C1)/ex
p(Int(1/f(x)*g(x)*(m-n+1),x)) = 0