4.2.27 y(x)=f(x)(a+by(x)+cy(x)2)

ODE
y(x)=f(x)(a+by(x)+cy(x)2) ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.066664 (sec), leaf count = 62

{{y(x)4acb2tan(124acb2(1xf(K[1])dK[1]+c1))b2c}}

Maple
cpu = 0.011 (sec), leaf count = 44

{f(x)dx214cab2arctan(2cy(x)+b4cab2)+_C1=0} Mathematica raw input

DSolve[y'[x] == f[x]*(a + b*y[x] + c*y[x]^2),y[x],x]

Mathematica raw output

{{y[x] -> (-b + Sqrt[-b^2 + 4*a*c]*Tan[(Sqrt[-b^2 + 4*a*c]*(C[1] + Integrate[f[K
[1]], {K[1], 1, x}]))/2])/(2*c)}}

Maple raw input

dsolve(diff(y(x),x) = (a+b*y(x)+c*y(x)^2)*f(x), y(x),'implicit')

Maple raw output

Int(f(x),x)-2/(4*a*c-b^2)^(1/2)*arctan((2*c*y(x)+b)/(4*a*c-b^2)^(1/2))+_C1 = 0