4.2.29 y(x)=y(x)2(aex+y(x))

ODE
y(x)=y(x)2(aex+y(x)) ODE Classification

[_Abel]

Book solution method
Abel ODE, First kind

Mathematica
cpu = 0.876621 (sec), leaf count = 73

Solve[iaex=2e(aexy(x)+1)22y(x)22c1i2πerf(aexy(x)+12y(x)),y(x)]

Maple
cpu = 0.062 (sec), leaf count = 50

{_C1+1aexe(aex+(y(x))1)22+2π2Erf((aex+(y(x))1)22)=0} Mathematica raw input

DSolve[y'[x] == y[x]^2*(a*E^x + y[x]),y[x],x]

Mathematica raw output

Solve[(-I)*a*E^x == 2/(E^((1 + a*E^x*y[x])^2/(2*y[x]^2))*(2*C[1] - I*Sqrt[2*Pi]*
Erf[(1 + a*E^x*y[x])/(Sqrt[2]*y[x])])), y[x]]

Maple raw input

dsolve(diff(y(x),x) = (a*exp(x)+y(x))*y(x)^2, y(x),'implicit')

Maple raw output

_C1+exp(-1/2*(a*exp(x)+1/y(x))^2)/a/exp(x)+1/2*erf(1/2*(a*exp(x)+1/y(x))*2^(1/2)
)*2^(1/2)*Pi^(1/2) = 0