[[_1st_order, _with_linear_symmetries]]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 1.09311 (sec), leaf count = 217
Maple ✓
cpu = 0.205 (sec), leaf count = 23
DSolve[-12*x^4*y[x] + 4*x^5*y'[x] + y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[(x^2*Log[y[x]]*Sqrt[x^6 + 3*y[x]] + (Log[1 + x^6/(3*y[x])] - Log[1 + (3*y
[x])/x^6] + 2*Log[x^3 + Sqrt[x^6 + 3*y[x]]])*Sqrt[x^4*(x^6 + 3*y[x])])/(6*x^2*Sq
rt[x^6 + 3*y[x]]) == C[1], y[x]], Solve[(x^2*Log[y[x]]*Sqrt[x^6 + 3*y[x]] + (-Lo
g[1 + x^6/(3*y[x])] + Log[1 + (3*y[x])/x^6] - 2*Log[x^3 + Sqrt[x^6 + 3*y[x]]])*S
qrt[x^4*(x^6 + 3*y[x])])/(6*x^2*Sqrt[x^6 + 3*y[x]]) == C[1], y[x]]}
Maple raw input
dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = -1/3*x^6, y(x) = _C1*x^3+3/4*_C1^2