4.17.10 4x5y(x)12x4y(x)+y(x)2=0

ODE
4x5y(x)12x4y(x)+y(x)2=0 ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 1.09311 (sec), leaf count = 217

{Solve[x2x6+3y(x)log(y(x))+x4(x6+3y(x))(log(x63y(x)+1)log(3y(x)x6+1)+2log(x6+3y(x)+x3))6x2x6+3y(x)=c1,y(x)],Solve[x2x6+3y(x)log(y(x))+x4(x6+3y(x))(log(x63y(x)+1)+log(3y(x)x6+1)2log(x6+3y(x)+x3))6x2x6+3y(x)=c1,y(x)]}

Maple
cpu = 0.205 (sec), leaf count = 23

{y(x)=x63,y(x)=_C1x3+3_C124} Mathematica raw input

DSolve[-12*x^4*y[x] + 4*x^5*y'[x] + y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[(x^2*Log[y[x]]*Sqrt[x^6 + 3*y[x]] + (Log[1 + x^6/(3*y[x])] - Log[1 + (3*y
[x])/x^6] + 2*Log[x^3 + Sqrt[x^6 + 3*y[x]]])*Sqrt[x^4*(x^6 + 3*y[x])])/(6*x^2*Sq
rt[x^6 + 3*y[x]]) == C[1], y[x]], Solve[(x^2*Log[y[x]]*Sqrt[x^6 + 3*y[x]] + (-Lo
g[1 + x^6/(3*y[x])] + Log[1 + (3*y[x])/x^6] - 2*Log[x^3 + Sqrt[x^6 + 3*y[x]]])*S
qrt[x^4*(x^6 + 3*y[x])])/(6*x^2*Sqrt[x^6 + 3*y[x]]) == C[1], y[x]]}

Maple raw input

dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = -1/3*x^6, y(x) = _C1*x^3+3/4*_C1^2