4.2.32 y(x)=a0+a1y(x)+a2y(x)2+a3y(x)3

ODE
y(x)=a0+a1y(x)+a2y(x)2+a3y(x)3 ODE Classification

[_quadrature]

Book solution method
Separable ODE, Independent variable missing

Mathematica
cpu = 0.0391074 (sec), leaf count = 54

Solve[c1+x=RootSum[#13a3+#12a2+#1a1+a0&,log(y(x)#1)3#12a3+2#1a2+a1&],y(x)]

Maple
cpu = 0.019 (sec), leaf count = 30

{xy(x)(_a3a3+_a2a2+_aa1+a0)1d_a+_C1=0} Mathematica raw input

DSolve[y'[x] == a0 + a1*y[x] + a2*y[x]^2 + a3*y[x]^3,y[x],x]

Mathematica raw output

Solve[x + C[1] == RootSum[a0 + a1*#1 + a2*#1^2 + a3*#1^3 & , Log[-#1 + y[x]]/(a1
 + 2*a2*#1 + 3*a3*#1^2) & ], y[x]]

Maple raw input

dsolve(diff(y(x),x) = a0+a1*y(x)+a2*y(x)^2+a3*y(x)^3, y(x),'implicit')

Maple raw output

x-Intat(1/(_a^3*a3+_a^2*a2+_a*a1+a0),_a = y(x))+_C1 = 0