4.17.31 2xy(x)3y(x)+y(x)2+y(x)4=0

ODE
2xy(x)3y(x)+y(x)2+y(x)4=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 0.773611 (sec), leaf count = 199

{Solve[x2y(x)21y(x)2(c1+log(y(x)))+y(x)4(x2y(x)21)(log(y(x))log(y(x)(x2y(x)21+xy(x))))y(x)x2y(x)21=0,y(x)],Solve[x2y(x)21y(x)2(c1+log(y(x)))+y(x)4(x2y(x)21)(log(y(x)(x2y(x)21+xy(x)))log(y(x)))y(x)x2y(x)21=0,y(x)]}

Maple
cpu = 0.075 (sec), leaf count = 81

{(y(x))2x2=0,ln(x)_C1ln(xy(x)+x2(y(x))21)ln(xy(x))=0,ln(x)_C1+ln(xy(x)+x2(y(x))21)ln(xy(x))=0} Mathematica raw input

DSolve[y[x]^4 + 2*x*y[x]^3*y'[x] + y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[((C[1] + Log[y[x]])*y[x]^2*Sqrt[-1 + x^2*y[x]^2] + (Log[y[x]] - Log[y[x]*
(x*y[x] + Sqrt[-1 + x^2*y[x]^2])])*Sqrt[y[x]^4*(-1 + x^2*y[x]^2)])/(y[x]*Sqrt[-1
 + x^2*y[x]^2]) == 0, y[x]], Solve[((C[1] + Log[y[x]])*y[x]^2*Sqrt[-1 + x^2*y[x]
^2] + (-Log[y[x]] + Log[y[x]*(x*y[x] + Sqrt[-1 + x^2*y[x]^2])])*Sqrt[y[x]^4*(-1 
+ x^2*y[x]^2)])/(y[x]*Sqrt[-1 + x^2*y[x]^2]) == 0, y[x]]}

Maple raw input

dsolve(diff(y(x),x)^2+2*x*y(x)^3*diff(y(x),x)+y(x)^4 = 0, y(x),'implicit')

Maple raw output

y(x)^2-1/x^2 = 0, ln(x)-_C1+ln(x*y(x)+(x^2*y(x)^2-1)^(1/2))-ln(x*y(x)) = 0, ln(x
)-_C1-ln(x*y(x)+(x^2*y(x)^2-1)^(1/2))-ln(x*y(x)) = 0