[[_homogeneous, `class G`]]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.773611 (sec), leaf count = 199
Maple ✓
cpu = 0.075 (sec), leaf count = 81
DSolve[y[x]^4 + 2*x*y[x]^3*y'[x] + y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[((C[1] + Log[y[x]])*y[x]^2*Sqrt[-1 + x^2*y[x]^2] + (Log[y[x]] - Log[y[x]*
(x*y[x] + Sqrt[-1 + x^2*y[x]^2])])*Sqrt[y[x]^4*(-1 + x^2*y[x]^2)])/(y[x]*Sqrt[-1
+ x^2*y[x]^2]) == 0, y[x]], Solve[((C[1] + Log[y[x]])*y[x]^2*Sqrt[-1 + x^2*y[x]
^2] + (-Log[y[x]] + Log[y[x]*(x*y[x] + Sqrt[-1 + x^2*y[x]^2])])*Sqrt[y[x]^4*(-1
+ x^2*y[x]^2)])/(y[x]*Sqrt[-1 + x^2*y[x]^2]) == 0, y[x]]}
Maple raw input
dsolve(diff(y(x),x)^2+2*x*y(x)^3*diff(y(x),x)+y(x)^4 = 0, y(x),'implicit')
Maple raw output
y(x)^2-1/x^2 = 0, ln(x)-_C1+ln(x*y(x)+(x^2*y(x)^2-1)^(1/2))-ln(x*y(x)) = 0, ln(x
)-_C1-ln(x*y(x)+(x^2*y(x)^2-1)^(1/2))-ln(x*y(x)) = 0