[[_1st_order, _with_linear_symmetries]]
Book solution method
Change of variable
Mathematica ✓
cpu = 0.971818 (sec), leaf count = 175
Maple ✓
cpu = 2.484 (sec), leaf count = 142
DSolve[9*y[x]^(5/3) - 3*x*y[x]^(2/3)*y'[x] + y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[(-6*C[1] + Log[y[x]] + ((6*Log[x + Sqrt[x^2 - 4*y[x]^(1/3)]] - Log[y[x]])
*(x^2 - 4*y[x]^(1/3))^(3/2)*y[x]^2)/((x^2 - 4*y[x]^(1/3))*y[x]^(4/3))^(3/2))/6 =
= 0, y[x]], Solve[(-6*C[1] + Log[y[x]] + ((-6*Log[x + Sqrt[x^2 - 4*y[x]^(1/3)]]
+ Log[y[x]])*(x^2 - 4*y[x]^(1/3))^(3/2)*y[x]^2)/((x^2 - 4*y[x]^(1/3))*y[x]^(4/3)
)^(3/2))/6 == 0, y[x]]}
Maple raw input
dsolve(diff(y(x),x)^2-3*x*y(x)^(2/3)*diff(y(x),x)+9*y(x)^(5/3) = 0, y(x),'implicit')
Maple raw output
y(x)^(1/3)-1/4*x^2 = 0, ln(x)-1/6*ln(4*(y(x)/x^6)^(1/3)-1)+1/6*ln(y(x)/x^6)-(-4*
(y(x)/x^6)^(5/3)+(y(x)/x^6)^(4/3))^(1/2)/(y(x)/x^6)^(2/3)/(-4*(y(x)/x^6)^(1/3)+1
)^(1/2)*arctanh((-4*(y(x)/x^6)^(1/3)+1)^(1/2))-1/6*ln(16*(y(x)/x^6)^(2/3)+4*(y(x
)/x^6)^(1/3)+1)+1/6*ln(64*y(x)/x^6-1)-_C1 = 0