4.17.42 4y(x)2+2xe2y(x)y(x)e2y(x)=0

ODE
4y(x)2+2xe2y(x)y(x)e2y(x)=0 ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
Change of variable

Mathematica
cpu = 0.254795 (sec), leaf count = 56

{{y(x)12log(14ec1(ec12x))},Solve[c1+log(x2+4e2y(x)+x)=2y(x),y(x)]}

Maple
cpu = 0.733 (sec), leaf count = 83

{ln(x)ln(e2y(x)x2)2e2y(x)x2(4e2y(x)x2+1)x4e4y(x)Artanh(14e2y(x)x2+1)14e2y(x)x2+1_C1=0} Mathematica raw input

DSolve[-E^(-2*y[x]) + (2*x*y'[x])/E^(2*y[x]) + 4*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> Log[(E^C[1]*(E^C[1] - 2*x))/4]/2}, Solve[C[1] + Log[x + Sqrt[4*E^(2*y[
x]) + x^2]] == 2*y[x], y[x]]}

Maple raw input

dsolve(4*diff(y(x),x)^2+2*x*exp(-2*y(x))*diff(y(x),x)-exp(-2*y(x)) = 0, y(x),'implicit')

Maple raw output

ln(x)-1/2*ln(exp(-2*y(x))*x^2)-((4/x^2*exp(2*y(x))+1)*x^4*exp(-4*y(x)))^(1/2)/x^
2*exp(2*y(x))/(4/x^2*exp(2*y(x))+1)^(1/2)*arctanh(1/(4/x^2*exp(2*y(x))+1)^(1/2))
-_C1 = 0