[[_homogeneous, `class G`], _rational]
Book solution method
Homogeneous ODE, The Isobaric equation
Mathematica ✗
cpu = 600.002 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.178 (sec), leaf count = 269
DSolve[-x^2 + y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)-x^2 = 0, y(x),'implicit')
Maple raw output
Int((-y(x)+(4*_a^3+y(x)^2)^(1/2))/(4*y(x)-(4*_a^3+y(x)^2)^(1/2))/_a,_a = _b .. x
)+Intat((-2+(48*_f-12*(4*x^3+_f^2)^(1/2))*Int(1/(-4*_f+(4*_a^3+_f^2)^(1/2))^2*_a
^2/(4*_a^3+_f^2)^(1/2),_a = _b .. x))/(4*_f-(4*x^3+_f^2)^(1/2)),_f = y(x))+_C1 =
0, Int((-y(x)-(4*_a^3+y(x)^2)^(1/2))/((4*_a^3+y(x)^2)^(1/2)+4*y(x))/_a,_a = _b
.. x)+Intat((-2+(-48*_f-12*(4*x^3+_f^2)^(1/2))*Int(1/((4*_a^3+_f^2)^(1/2)+4*_f)^
2*_a^2/(4*_a^3+_f^2)^(1/2),_a = _b .. x))/((4*x^3+_f^2)^(1/2)+4*_f),_f = y(x))+_
C1 = 0