4.18.21 ax+xy(x)22y(x)y(x)=0

ODE
ax+xy(x)22y(x)y(x)=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous ODE, xnf(yx,y)=0, Solve for y

Mathematica
cpu = 0.072401 (sec), leaf count = 151

{{y(x)axtan(c1ilog(x))sec2(c1ilog(x))},{y(x)axtan(c1ilog(x))sec2(c1ilog(x))},{y(x)axtan(c1+ilog(x))sec2(c1+ilog(x))},{y(x)axtan(c1+ilog(x))sec2(c1+ilog(x))}}

Maple
cpu = 0.023 (sec), leaf count = 32

{(y(x))2ax2=0,[x(_T)=_T_C1,y(_T)=(_T2+a)_C12]} Mathematica raw input

DSolve[a*x - 2*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -((Sqrt[a]*x*Tan[C[1] - I*Log[x]])/Sqrt[Sec[C[1] - I*Log[x]]^2])}, {y[
x] -> (Sqrt[a]*x*Tan[C[1] - I*Log[x]])/Sqrt[Sec[C[1] - I*Log[x]]^2]}, {y[x] -> -
((Sqrt[a]*x*Tan[C[1] + I*Log[x]])/Sqrt[Sec[C[1] + I*Log[x]]^2])}, {y[x] -> (Sqrt
[a]*x*Tan[C[1] + I*Log[x]])/Sqrt[Sec[C[1] + I*Log[x]]^2]}}

Maple raw input

dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+a*x = 0, y(x),'implicit')

Maple raw output

y(x)^2-a*x^2 = 0, [x(_T) = _T*_C1, y(_T) = 1/2*(_T^2+a)*_C1]