[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
Homogeneous ODE,
Mathematica ✓
cpu = 0.072401 (sec), leaf count = 151
Maple ✓
cpu = 0.023 (sec), leaf count = 32
DSolve[a*x - 2*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> -((Sqrt[a]*x*Tan[C[1] - I*Log[x]])/Sqrt[Sec[C[1] - I*Log[x]]^2])}, {y[
x] -> (Sqrt[a]*x*Tan[C[1] - I*Log[x]])/Sqrt[Sec[C[1] - I*Log[x]]^2]}, {y[x] -> -
((Sqrt[a]*x*Tan[C[1] + I*Log[x]])/Sqrt[Sec[C[1] + I*Log[x]]^2])}, {y[x] -> (Sqrt
[a]*x*Tan[C[1] + I*Log[x]])/Sqrt[Sec[C[1] + I*Log[x]]^2]}}
Maple raw input
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+a*x = 0, y(x),'implicit')
Maple raw output
y(x)^2-a*x^2 = 0, [x(_T) = _T*_C1, y(_T) = 1/2*(_T^2+a)*_C1]