4.18.23 9x2+xy(x)23y(x)y(x)=0

ODE
9x2+xy(x)23y(x)y(x)=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 1.82809 (sec), leaf count = 357

{Solve[(y(x)(y(x)24x3y(x))+4x3)(14x3y(x)2y(x)(log(14x3y(x)2)log(1y(x)24x3))+2y(x)24x3tanh1(14x3y(x)2))314x3y(x)2y(x)y(x)24x3(y(x)y(x)24x3)+23log(y(x))=c1,y(x)],Solve[23log(y(x))=c1+(y(x)(y(x)24x3+y(x))4x3)(14x3y(x)2y(x)(log(1y(x)24x3)log(14x3y(x)2))+2y(x)24x3tanh1(14x3y(x)2))314x3y(x)2y(x)y(x)24x3(y(x)24x3+y(x)),y(x)]}

Maple
cpu = 0.096 (sec), leaf count = 61

{(y(x))24x3=0,y(x)x3+1x3(y(x))24x3_C1=0,y(x)+(y(x))24x3_C1=0} Mathematica raw input

DSolve[9*x^2 - 3*y[x]*y'[x] + x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[(2*Log[y[x]])/3 + (((Log[1 - (4*x^3)/y[x]^2] - Log[1 - y[x]^2/(4*x^3)])*S
qrt[1 - (4*x^3)/y[x]^2]*y[x] + 2*ArcTanh[Sqrt[1 - (4*x^3)/y[x]^2]]*Sqrt[-4*x^3 +
 y[x]^2])*(4*x^3 + y[x]*(-y[x] + Sqrt[-4*x^3 + y[x]^2])))/(3*Sqrt[1 - (4*x^3)/y[
x]^2]*y[x]*Sqrt[-4*x^3 + y[x]^2]*(y[x] - Sqrt[-4*x^3 + y[x]^2])) == C[1], y[x]],
 Solve[(2*Log[y[x]])/3 == C[1] + (((-Log[1 - (4*x^3)/y[x]^2] + Log[1 - y[x]^2/(4
*x^3)])*Sqrt[1 - (4*x^3)/y[x]^2]*y[x] + 2*ArcTanh[Sqrt[1 - (4*x^3)/y[x]^2]]*Sqrt
[-4*x^3 + y[x]^2])*(-4*x^3 + y[x]*(y[x] + Sqrt[-4*x^3 + y[x]^2])))/(3*Sqrt[1 - (
4*x^3)/y[x]^2]*y[x]*Sqrt[-4*x^3 + y[x]^2]*(y[x] + Sqrt[-4*x^3 + y[x]^2])), y[x]]
}

Maple raw input

dsolve(x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+9*x^2 = 0, y(x),'implicit')

Maple raw output

y(x)^2-4*x^3 = 0, y(x)+(y(x)^2-4*x^3)^(1/2)-_C1 = 0, 1/x^3*y(x)+1/x^3*(y(x)^2-4*
x^3)^(1/2)-_C1 = 0