[[_homogeneous, `class G`], _rational, _dAlembert]
Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)
Mathematica ✓
cpu = 1.15782 (sec), leaf count = 613
Maple ✓
cpu = 0.021 (sec), leaf count = 33
DSolve[3 - 3*y[x]*y'[x] + 4*x*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> -(Sqrt[2/3]*Sqrt[54*x + Cosh[C[1]] + Sinh[C[1]] + (-Cosh[C[1]] + Sinh[
C[1]])*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(-18*x + Cosh[C[1]] + Sinh[C[1]])^3]])/3},
{y[x] -> (Sqrt[2/3]*Sqrt[54*x + Cosh[C[1]] + Sinh[C[1]] + (-Cosh[C[1]] + Sinh[C
[1]])*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(-18*x + Cosh[C[1]] + Sinh[C[1]])^3]])/3},
{y[x] -> -(Sqrt[2/3]*Sqrt[54*x + Cosh[C[1]] + Sinh[C[1]] + (Cosh[C[1]] - Sinh[C[
1]])*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(-18*x + Cosh[C[1]] + Sinh[C[1]])^3]])/3}, {
y[x] -> (Sqrt[2/3]*Sqrt[54*x + Cosh[C[1]] + Sinh[C[1]] + (Cosh[C[1]] - Sinh[C[1]
])*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(-18*x + Cosh[C[1]] + Sinh[C[1]])^3]])/3}, {y[
x] -> -(Sqrt[2/3]*Sqrt[54*x - Cosh[C[1]] - Sinh[C[1]] + Cosh[C[1]]*Sqrt[(Cosh[C[
1]] + Sinh[C[1]])*(18*x + Cosh[C[1]] + Sinh[C[1]])^3] - Sinh[C[1]]*Sqrt[(Cosh[C[
1]] + Sinh[C[1]])*(18*x + Cosh[C[1]] + Sinh[C[1]])^3]])/3}, {y[x] -> (Sqrt[2/3]*
Sqrt[54*x - Cosh[C[1]] - Sinh[C[1]] + Cosh[C[1]]*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*
(18*x + Cosh[C[1]] + Sinh[C[1]])^3] - Sinh[C[1]]*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*
(18*x + Cosh[C[1]] + Sinh[C[1]])^3]])/3}, {y[x] -> -(Sqrt[2/3]*Sqrt[54*x - Cosh[
C[1]] - Sinh[C[1]] - Cosh[C[1]]*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(18*x + Cosh[C[1]
] + Sinh[C[1]])^3] + Sinh[C[1]]*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(18*x + Cosh[C[1]
] + Sinh[C[1]])^3]])/3}, {y[x] -> (Sqrt[2/3]*Sqrt[54*x - Cosh[C[1]] - Sinh[C[1]]
- Cosh[C[1]]*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(18*x + Cosh[C[1]] + Sinh[C[1]])^3]
+ Sinh[C[1]]*Sqrt[(Cosh[C[1]] + Sinh[C[1]])*(18*x + Cosh[C[1]] + Sinh[C[1]])^3]
])/3}}
Maple raw input
dsolve(4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3 = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/_T^4*(3/2*_T^2+_C1), y(_T) = 1/3*(9*_T^2+4*_C1)/_T^3]