4.18.42 4y(x)y(x)+4xy(x)2y(x)4=0

ODE
4y(x)y(x)+4xy(x)2y(x)4=0 ODE Classification

[[_homogeneous, `class G`]]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 0.194342 (sec), leaf count = 123

{{y(x)tanh2(12(c1log(x)))1x},{y(x)tanh2(12(c1log(x)))1x},{y(x)tanh2(12(log(x)c1))1x},{y(x)tanh2(12(log(x)c1))1x}}

Maple
cpu = 0.073 (sec), leaf count = 53

{(y(x))2+x1=0,ln(x)_C12Artanh(11+x(y(x))2)=0,ln(x)_C1+2Artanh(11+x(y(x))2)=0} Mathematica raw input

DSolve[-y[x]^4 + 4*y[x]*y'[x] + 4*x*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -(Sqrt[-1 + Tanh[(C[1] - Log[x])/2]^2]/Sqrt[x])}, {y[x] -> Sqrt[-1 + T
anh[(C[1] - Log[x])/2]^2]/Sqrt[x]}, {y[x] -> -(Sqrt[-1 + Tanh[(-C[1] + Log[x])/2
]^2]/Sqrt[x])}, {y[x] -> Sqrt[-1 + Tanh[(-C[1] + Log[x])/2]^2]/Sqrt[x]}}

Maple raw input

dsolve(4*x*diff(y(x),x)^2+4*y(x)*diff(y(x),x)-y(x)^4 = 0, y(x),'implicit')

Maple raw output

y(x)^2+1/x = 0, ln(x)-_C1+2*arctanh(1/(1+x*y(x)^2)^(1/2)) = 0, ln(x)-_C1-2*arcta
nh(1/(1+x*y(x)^2)^(1/2)) = 0