4.18.47 x2y(x)2+x2y(x)2=0

ODE
x2y(x)2+x2y(x)2=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.209988 (sec), leaf count = 147

{Solve[x(2c1+2sinh1(y(x)x12)2log(x)1)=y(x)2x+y(x)+xxy(x)x1y(x),y(x)],Solve[x(2c1+2sinh1(y(x)x12)+2log(x)+1)+y(x)2x=y(x)y(x)+xxy(x)x1,y(x)]}

Maple
cpu = 0.053 (sec), leaf count = 137

{ln(x)y(x)2x(y(x))2x2x2+12ln(1x((y(x))2x2x2x+y(x)))+(y(x))22x2_C1=0,ln(x)+y(x)2x(y(x))2x2x212ln(1x((y(x))2x2x2x+y(x)))+(y(x))22x2_C1=0} Mathematica raw input

DSolve[x^2 - y[x]^2 + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[x*(-1 + 2*ArcSinh[Sqrt[-1 + y[x]/x]/Sqrt[2]] - 2*C[1] - 2*Log[x]) == y[x]
^2/x + y[x]*Sqrt[(x + y[x])/x]*Sqrt[-1 + y[x]/x], y[x]], Solve[x*(1 + 2*ArcSinh[
Sqrt[-1 + y[x]/x]/Sqrt[2]] - 2*C[1] + 2*Log[x]) + y[x]^2/x == y[x]*Sqrt[(x + y[x
])/x]*Sqrt[-1 + y[x]/x], y[x]]}

Maple raw input

dsolve(x^2*diff(y(x),x)^2+x^2-y(x)^2 = 0, y(x),'implicit')

Maple raw output

ln(x)-1/2*((y(x)^2-x^2)/x^2)^(1/2)/x*y(x)+1/2*ln((((y(x)^2-x^2)/x^2)^(1/2)*x+y(x
))/x)+1/2/x^2*y(x)^2-_C1 = 0, ln(x)+1/2*((y(x)^2-x^2)/x^2)^(1/2)/x*y(x)-1/2*ln((
((y(x)^2-x^2)/x^2)^(1/2)*x+y(x))/x)+1/2/x^2*y(x)^2-_C1 = 0