4.19.8 x(x32y(x))y(x)(2x3y(x))y(x)+x2y(x)2=0

ODE
x(x32y(x))y(x)(2x3y(x))y(x)+x2y(x)2=0 ODE Classification

[[_homogeneous, `class G`], _rational]

Book solution method
Change of variable

Mathematica
cpu = 0.889102 (sec), leaf count = 154

{Solve[12(2x5/2x3y(x)+4y(x)sinh1(x3/22y(x))x8+4x5y(x)+log(y(x))log(x))=c1,y(x)],Solve[x5/2x3y(x)+4y(x)sinh1(x3/22y(x))x8+4x5y(x)+12log(y(x))log(x)2=c1,y(x)]}

Maple
cpu = 0.173 (sec), leaf count = 130

{1x((_C1x+y(x))x6+4x3y(x)_C1x4x3y(x))(x3+x6+4x3y(x))1=0,1y(x)((_C1y(x)+x)x6+4x3y(x)y(x)_C1x3x4)(x3+x6+4x3y(x))1=0,y(x)=x34} Mathematica raw input

DSolve[-((2*x^3 - y[x])*y[x]) + x*(x^3 - 2*y[x])*y'[x] + x^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{Solve[(-Log[x] + Log[y[x]] - (2*x^(5/2)*ArcSinh[x^(3/2)/(2*Sqrt[y[x]])]*Sqrt[4 
+ x^3/y[x]]*Sqrt[y[x]])/Sqrt[x^8 + 4*x^5*y[x]])/2 == C[1], y[x]], Solve[-Log[x]/
2 + Log[y[x]]/2 + (x^(5/2)*ArcSinh[x^(3/2)/(2*Sqrt[y[x]])]*Sqrt[4 + x^3/y[x]]*Sq
rt[y[x]])/Sqrt[x^8 + 4*x^5*y[x]] == C[1], y[x]]}

Maple raw input

dsolve(x^2*diff(y(x),x)^2+x*(x^3-2*y(x))*diff(y(x),x)-(2*x^3-y(x))*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = -1/4*x^3, ((-_C1*y(x)+x)*(x^6+4*x^3*y(x))^(1/2)-y(x)*_C1*x^3-x^4)/y(x)/(x
^3+(x^6+4*x^3*y(x))^(1/2)) = 0, ((-_C1*x+y(x))*(x^6+4*x^3*y(x))^(1/2)-_C1*x^4-x^
3*y(x))/(x^3+(x^6+4*x^3*y(x))^(1/2))/x = 0