4.19.24 (a2x2)y(x)2+x2+2xy(x)y(x)=0

ODE
(a2x2)y(x)2+x2+2xy(x)y(x)=0 ODE Classification

[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.416386 (sec), leaf count = 26

{{y(x)a2+c12x22c1}}

Maple
cpu = 0.449 (sec), leaf count = 36

{(y(x))2a2+x2=0,y(x)=_C1x2_C1a214_C1} Mathematica raw input

DSolve[x^2 + 2*x*y[x]*y'[x] + (a^2 - x^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> (a^2 - x^2 + C[1]^2)/(2*C[1])}}

Maple raw input

dsolve((a^2-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+x^2 = 0, y(x),'implicit')

Maple raw output

y(x)^2-a^2+x^2 = 0, y(x) = _C1*x^2-_C1*a^2-1/4/_C1