ODE
\[ \left (a^2-x^2\right ) y'(x)^2+x^2+2 x y(x) y'(x)=0 \] ODE Classification
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
Book solution method
No Missing Variables ODE, Solve for \(y\)
Mathematica ✓
cpu = 0.416386 (sec), leaf count = 26
\[\left \{\left \{y(x)\to \frac {a^2+c_1^2-x^2}{2 c_1}\right \}\right \}\]
Maple ✓
cpu = 0.449 (sec), leaf count = 36
\[ \left \{ \left ( y \left ( x \right ) \right ) ^{2}-{a}^{2}+{x}^{2}=0,y \left ( x \right ) ={\it \_C1}\,{x}^{2}-{\it \_C1}\,{a}^{2}-{\frac {1}{4\,{\it \_C1}}} \right \} \] Mathematica raw input
DSolve[x^2 + 2*x*y[x]*y'[x] + (a^2 - x^2)*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> (a^2 - x^2 + C[1]^2)/(2*C[1])}}
Maple raw input
dsolve((a^2-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+x^2 = 0, y(x),'implicit')
Maple raw output
y(x)^2-a^2+x^2 = 0, y(x) = _C1*x^2-_C1*a^2-1/4/_C1