4.19.26 (a2+x2)y(x)2+b2xy(x)y(x)+y(x)2=0

ODE
(a2+x2)y(x)2+b2xy(x)y(x)+y(x)2=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 601.717 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.044 (sec), leaf count = 69

{a2(y(x))2+b(a2+x2)a2=0,y(x)=_C1x_C12a2b,y(x)=_C1x+_C12a2b} Mathematica raw input

DSolve[b + y[x]^2 - 2*x*y[x]*y'[x] + (a^2 + x^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve((a^2+x^2)*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+b+y(x)^2 = 0, y(x),'implicit')

Maple raw output

(a^2*y(x)^2+b*(a^2+x^2))/a^2 = 0, y(x) = _C1*x-(-_C1^2*a^2-b)^(1/2), y(x) = _C1*
x+(-_C1^2*a^2-b)^(1/2)