4.19.47 y(x)y(x)2=e2x

ODE
y(x)y(x)2=e2x ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
Change of variable

Mathematica
cpu = 0.0145078 (sec), leaf count = 47

{{y(x)(32)2/3(c1ex)2/3},{y(x)(32)2/3(c1+ex)2/3}}

Maple
cpu = 0.076 (sec), leaf count = 50

{1y(x)(ex)21y(x)+23(y(x))32+_C1=0,1y(x)(ex)21y(x)+23(y(x))32+_C1=0} Mathematica raw input

DSolve[y[x]*y'[x]^2 == E^(2*x),y[x],x]

Mathematica raw output

{{y[x] -> (3/2)^(2/3)*(-E^x + C[1])^(2/3)}, {y[x] -> (3/2)^(2/3)*(E^x + C[1])^(2
/3)}}

Maple raw input

dsolve(y(x)*diff(y(x),x)^2 = exp(2*x), y(x),'implicit')

Maple raw output

-1/y(x)^(1/2)*(y(x)*exp(x)^2)^(1/2)+2/3*y(x)^(3/2)+_C1 = 0, 1/y(x)^(1/2)*(y(x)*e
xp(x)^2)^(1/2)+2/3*y(x)^(3/2)+_C1 = 0