[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.467269 (sec), leaf count = 245
Maple ✓
cpu = 0.057 (sec), leaf count = 112
DSolve[b*y[x] + a*x*y'[x] + y[x]*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{Solve[(4*Log[x] + (2*a*ArcTanh[Sqrt[a^2 - (4*b*y[x]^2)/x^2]/a] - 2*(a + 2*b)*Ar
cTanh[Sqrt[a^2 - (4*b*y[x]^2)/x^2]/(a + 2*b)] + a*Log[y[x]^2/x^2] + a*Log[a + b
+ y[x]^2/x^2] + 2*b*Log[a + b + y[x]^2/x^2])/(a + b))/8 == C[1], y[x]], Solve[(4
*Log[x] + (-2*a*ArcTanh[Sqrt[a^2 - (4*b*y[x]^2)/x^2]/a] + 2*(a + 2*b)*ArcTanh[Sq
rt[a^2 - (4*b*y[x]^2)/x^2]/(a + 2*b)] + a*Log[y[x]^2/x^2] + a*Log[a + b + y[x]^2
/x^2] + 2*b*Log[a + b + y[x]^2/x^2])/(a + b))/8 == C[1], y[x]]}
Maple raw input
dsolve(y(x)*diff(y(x),x)^2+a*x*diff(y(x),x)+b*y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = (_T^2+a+b)^(-a/(2*a+2*b))*(_T^2+b)*_C1/(_T^(a/(a+b)))/((_T^2+a+b)^(1/(a
+b)*b)), y(_T) = -_T*a*(_T^2+a+b)^(-a/(2*a+2*b))*_C1/(_T^(a/(a+b)))/((_T^2+a+b)^
(1/(a+b)*b))]