[_quadrature]
Book solution method
Change of variable
Mathematica ✓
cpu = 6.31425 (sec), leaf count = 305
Maple ✓
cpu = 0.02 (sec), leaf count = 37
DSolve[-2*x*y[x]*y'[x] + (x^2 - a*y[x])*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[1]}, Solve[((2 - (2*(x^3 + 2*a*x*y[x]))/((x^3)^(1/3)*(x^2 - a*y[x]))
)*(4 + (-4*x + (6*x^3)/(x^2 - a*y[x]))/(x^3)^(1/3))*(-3 + Log[(2 - (2*(x^3 + 2*a
*x*y[x]))/((x^3)^(1/3)*(x^2 - a*y[x])))/2^(1/3)]*(1 - (x*(x^2 + 2*a*y[x]))/((x^3
)^(1/3)*(x^2 - a*y[x]))) + Log[(4 + (-4*x + (6*x^3)/(x^2 - a*y[x]))/(x^3)^(1/3))
/2^(1/3)]*(-1 + (x^3 + 2*a*x*y[x])/((x^3)^(1/3)*(x^2 - a*y[x])))))/(18*2^(1/3)*(
-2 - (x^2 + 2*a*y[x])^3/(x^2 - a*y[x])^3 + (3*(x^3 + 2*a*x*y[x]))/((x^3)^(1/3)*(
x^2 - a*y[x])))) == C[1] + (2*2^(2/3)*x*Log[x])/(9*(x^3)^(1/3)), y[x]]}
Maple raw input
dsolve((x^2-a*y(x))*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x) = 0, y(x),'implicit')
Maple raw output
ln(x)-_C1+1/2*(ln(y(x)/x^2)*a*y(x)+x^2)/a/y(x) = 0, y(x) = _C1