4.20.26 y(x)2y(x)23xy(x)+y(x)=0

ODE
y(x)2y(x)23xy(x)+y(x)=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _rational]

Book solution method
No Missing Variables ODE, Solve for x

Mathematica
cpu = 0.167357 (sec), leaf count = 177

{{y(x)23ec1(3x2ec1)3},{y(x)6ec1x4e2c13},{y(x)(1)2/36ec1x4e2c13},{y(x)ec1(ec16x)322/3},{y(x)13ec1(ec16x)322/3},{y(x)(12)2/3ec1(ec16x)3}}

Maple
cpu = 14.78 (sec), leaf count = 62

{(y(x))39x24=0,ln(x)y(x)x2318_a418_a(12_a3+94_a3+9+27)d_a_C1=0} Mathematica raw input

DSolve[y[x] - 3*x*y'[x] + y[x]^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -((-2)^(1/3)*(E^C[1]*(-2*E^C[1] + 3*x))^(1/3))}, {y[x] -> (-4*E^(2*C[1
]) + 6*E^C[1]*x)^(1/3)}, {y[x] -> (-1)^(2/3)*(-4*E^(2*C[1]) + 6*E^C[1]*x)^(1/3)}
, {y[x] -> (-(E^C[1]*(E^C[1] - 6*x)))^(1/3)/2^(2/3)}, {y[x] -> -(((-1)^(1/3)*(-(
E^C[1]*(E^C[1] - 6*x)))^(1/3))/2^(2/3))}, {y[x] -> (-1/2)^(2/3)*(-(E^C[1]*(E^C[1
] - 6*x)))^(1/3)}}

Maple raw input

dsolve(y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^3-9/4*x^2 = 0, ln(x)-Intat((-12*_a^3+9*(-4*_a^3+9)^(1/2)+27)/(8*_a^4-18*_a)
,_a = y(x)/x^(2/3))-_C1 = 0