4.20.26 \(y(x)^2 y'(x)^2-3 x y'(x)+y(x)=0\)

ODE
\[ y(x)^2 y'(x)^2-3 x y'(x)+y(x)=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries], _rational]

Book solution method
No Missing Variables ODE, Solve for \(x\)

Mathematica
cpu = 0.167357 (sec), leaf count = 177

\[\left \{\left \{y(x)\to -\sqrt [3]{-2} \sqrt [3]{e^{c_1} \left (3 x-2 e^{c_1}\right )}\right \},\left \{y(x)\to \sqrt [3]{6 e^{c_1} x-4 e^{2 c_1}}\right \},\left \{y(x)\to (-1)^{2/3} \sqrt [3]{6 e^{c_1} x-4 e^{2 c_1}}\right \},\left \{y(x)\to \frac {\sqrt [3]{-e^{c_1} \left (e^{c_1}-6 x\right )}}{2^{2/3}}\right \},\left \{y(x)\to -\frac {\sqrt [3]{-1} \sqrt [3]{-e^{c_1} \left (e^{c_1}-6 x\right )}}{2^{2/3}}\right \},\left \{y(x)\to \left (-\frac {1}{2}\right )^{2/3} \sqrt [3]{-e^{c_1} \left (e^{c_1}-6 x\right )}\right \}\right \}\]

Maple
cpu = 14.78 (sec), leaf count = 62

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{3}-{\frac {9\,{x}^{2}}{4}}=0,\ln \left ( x \right ) -\int ^{{y \left ( x \right ) {x}^{-{\frac {2}{3}}}}}\!{\frac {1}{8\,{{\it \_a}}^{4}-18\,{\it \_a}} \left ( -12\,{{\it \_a}}^{3}+9\,\sqrt {-4\,{{\it \_a}}^{3}+9}+27 \right ) }{d{\it \_a}}-{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[y[x] - 3*x*y'[x] + y[x]^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -((-2)^(1/3)*(E^C[1]*(-2*E^C[1] + 3*x))^(1/3))}, {y[x] -> (-4*E^(2*C[1
]) + 6*E^C[1]*x)^(1/3)}, {y[x] -> (-1)^(2/3)*(-4*E^(2*C[1]) + 6*E^C[1]*x)^(1/3)}
, {y[x] -> (-(E^C[1]*(E^C[1] - 6*x)))^(1/3)/2^(2/3)}, {y[x] -> -(((-1)^(1/3)*(-(
E^C[1]*(E^C[1] - 6*x)))^(1/3))/2^(2/3))}, {y[x] -> (-1/2)^(2/3)*(-(E^C[1]*(E^C[1
] - 6*x)))^(1/3)}}

Maple raw input

dsolve(y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^3-9/4*x^2 = 0, ln(x)-Intat((-12*_a^3+9*(-4*_a^3+9)^(1/2)+27)/(8*_a^4-18*_a)
,_a = y(x)/x^(2/3))-_C1 = 0