[[_1st_order, _with_linear_symmetries], _rational]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.167357 (sec), leaf count = 177
Maple ✓
cpu = 14.78 (sec), leaf count = 62
DSolve[y[x] - 3*x*y'[x] + y[x]^2*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> -((-2)^(1/3)*(E^C[1]*(-2*E^C[1] + 3*x))^(1/3))}, {y[x] -> (-4*E^(2*C[1
]) + 6*E^C[1]*x)^(1/3)}, {y[x] -> (-1)^(2/3)*(-4*E^(2*C[1]) + 6*E^C[1]*x)^(1/3)}
, {y[x] -> (-(E^C[1]*(E^C[1] - 6*x)))^(1/3)/2^(2/3)}, {y[x] -> -(((-1)^(1/3)*(-(
E^C[1]*(E^C[1] - 6*x)))^(1/3))/2^(2/3))}, {y[x] -> (-1/2)^(2/3)*(-(E^C[1]*(E^C[1
] - 6*x)))^(1/3)}}
Maple raw input
dsolve(y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x)^3-9/4*x^2 = 0, ln(x)-Intat((-12*_a^3+9*(-4*_a^3+9)^(1/2)+27)/(8*_a^4-18*_a)
,_a = y(x)/x^(2/3))-_C1 = 0