4.20.30 \(x^2+2 x y(x) y'(x)+y(x)^2 y'(x)^2=0\)

ODE
\[ x^2+2 x y(x) y'(x)+y(x)^2 y'(x)^2=0 \] ODE Classification

[_separable]

Book solution method
Homogeneous ODE, \(x^n f\left ( \frac {y}{x} , y' \right )=0\), Solve for \(p\)

Mathematica
cpu = 0.00560008 (sec), leaf count = 39

\[\left \{\left \{y(x)\to -\sqrt {2 c_1-x^2}\right \},\left \{y(x)\to \sqrt {2 c_1-x^2}\right \}\right \}\]

Maple
cpu = 0.025 (sec), leaf count = 14

\[ \left \{ {x}^{2}+ \left ( y \left ( x \right ) \right ) ^{2}-{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[x^2 + 2*x*y[x]*y'[x] + y[x]^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -Sqrt[-x^2 + 2*C[1]]}, {y[x] -> Sqrt[-x^2 + 2*C[1]]}}

Maple raw input

dsolve(y(x)^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+x^2 = 0, y(x),'implicit')

Maple raw output

x^2+y(x)^2-_C1 = 0