[_quadrature]
Book solution method
Separable ODE, Independent variable missing
Mathematica ✓
cpu = 95.6243 (sec), leaf count = 283
Maple ✓
cpu = 0.168 (sec), leaf count = 31
Mathematica raw input
DSolve[y'[x] == Sqrt[Abs[y[x]]],y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[(-2*2^(3/4)*Hypergeometric2F1[1/4, 3/4, 7/4, (2*Abs[Im
[#1]] + I*(-2 + Conjugate[#1] + #1))/(4*Abs[Im[#1]])]*(Abs[Im[#1]] + I*(1 - Re[#
1]))^(1/4)*(1 + I*Abs[Im[#1]] - Re[#1])*(1 - #1))/(3*Abs[Im[#1]]^(1/4)*(Im[#1]^2
+ (1 - Re[#1])^2)) - (2*2^(3/4)*Hypergeometric2F1[1/4, 3/4, 7/4, (2*Abs[Im[#1]]
+ I*(2*Abs[#1]^2 - Conjugate[#1] - #1))/(4*Abs[Im[#1]])]*((-I)*Abs[Im[#1]] + Im
[#1]^2 - Re[#1] + Re[#1]^2)*((Abs[Im[#1]] + I*(-Im[#1]^2 + (1 - Re[#1])*Re[#1]))
/(Im[#1]^2 + Re[#1]^2))^(1/4)*(1 - #1))/(3*Abs[Im[#1]]^(1/4)*(Im[#1]^2 + (1 - Re
[#1])^2)) & ][x + C[1]]}}
Maple raw input
dsolve(diff(y(x),x) = abs(y(x))^(1/2), y(x),'implicit')
Maple raw output
x-piecewise(y(x) <= 0,-2*(-y(x))^(1/2),0 < y(x),2*y(x)^(1/2))+_C1 = 0