4.2.49 y(x)=|y(x)|

ODE
y(x)=|y(x)| ODE Classification

[_quadrature]

Book solution method
Separable ODE, Independent variable missing

Mathematica
cpu = 95.6243 (sec), leaf count = 283

{{y(x)InverseFunction[2 23/4(1#1)|(#1)|+i(1(#1))4(i|(#1)|(#1)+1)2F1(14,34;74;2|(#1)|+i(#1+#12)4|(#1)|)3|(#1)|4((#1)2+(1(#1))2)2 23/4(1#1)(i|(#1)|+(#1)2+(#1)2(#1))|(#1)|+i((1(#1))(#1)(#1)2)(#1)2+(#1)242F1(14,34;74;2|(#1)|+i(2|#1|2#1#1)4|(#1)|)3|(#1)|4((#1)2+(1(#1))2)&][c1+x]}}

Maple
cpu = 0.168 (sec), leaf count = 31

Mathematica raw input

DSolve[y'[x] == Sqrt[Abs[y[x]]],y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[(-2*2^(3/4)*Hypergeometric2F1[1/4, 3/4, 7/4, (2*Abs[Im
[#1]] + I*(-2 + Conjugate[#1] + #1))/(4*Abs[Im[#1]])]*(Abs[Im[#1]] + I*(1 - Re[#
1]))^(1/4)*(1 + I*Abs[Im[#1]] - Re[#1])*(1 - #1))/(3*Abs[Im[#1]]^(1/4)*(Im[#1]^2
 + (1 - Re[#1])^2)) - (2*2^(3/4)*Hypergeometric2F1[1/4, 3/4, 7/4, (2*Abs[Im[#1]]
 + I*(2*Abs[#1]^2 - Conjugate[#1] - #1))/(4*Abs[Im[#1]])]*((-I)*Abs[Im[#1]] + Im
[#1]^2 - Re[#1] + Re[#1]^2)*((Abs[Im[#1]] + I*(-Im[#1]^2 + (1 - Re[#1])*Re[#1]))
/(Im[#1]^2 + Re[#1]^2))^(1/4)*(1 - #1))/(3*Abs[Im[#1]]^(1/4)*(Im[#1]^2 + (1 - Re
[#1])^2)) & ][x + C[1]]}}

Maple raw input

dsolve(diff(y(x),x) = abs(y(x))^(1/2), y(x),'implicit')

Maple raw output

x-piecewise(y(x) <= 0,-2*(-y(x))^(1/2),0 < y(x),2*y(x)^(1/2))+_C1 = 0