4.20.48 \(\left (x^2-4 y(x)^2\right ) y'(x)^2-4 x^2+6 x y(x) y'(x)+y(x)^2=0\)

ODE
\[ \left (x^2-4 y(x)^2\right ) y'(x)^2-4 x^2+6 x y(x) y'(x)+y(x)^2=0 \] ODE Classification

[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

Book solution method
No Missing Variables ODE, Solve for \(y'\)

Mathematica
cpu = 0.161977 (sec), leaf count = 3017

\[\left \{\left \{y(x)\to -\frac {x}{2}-\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}-\frac {1}{2} \sqrt {-\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{2}+\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}-\frac {1}{2} \sqrt {-\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to -\frac {x}{2}-\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}+\frac {1}{2} \sqrt {-\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{2}+\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}+\frac {1}{2} \sqrt {-\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{2}-\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}-\frac {1}{2} \sqrt {\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to -\frac {x}{2}+\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}-\frac {1}{2} \sqrt {\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to \frac {x}{2}-\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}+\frac {1}{2} \sqrt {\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \},\left \{y(x)\to -\frac {x}{2}+\frac {1}{2} \sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}+\frac {1}{2} \sqrt {\frac {2 x^3}{\sqrt {x^2+\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}+\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}}+2 x^2-\frac {\sqrt [3]{2} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}{3^{2/3}}-\frac {2\ 2^{2/3} e^{2 c_1}}{\sqrt [3]{3} \sqrt [3]{9 e^{2 c_1} x^2+\sqrt {81 e^{4 c_1} x^4-48 e^{6 c_1}}}}}\right \}\right \}\]

Maple
cpu = 0.032 (sec), leaf count = 69

\[ \left \{ -{\frac {3}{4}\ln \left ( {\frac {y \left ( x \right ) -x}{x}} \right ) }-{\frac {1}{4}\ln \left ( {\frac {x+y \left ( x \right ) }{x}} \right ) }-\ln \left ( x \right ) -{\it \_C1}=0,-{\frac {1}{4}\ln \left ( {\frac {y \left ( x \right ) -x}{x}} \right ) }-{\frac {3}{4}\ln \left ( {\frac {x+y \left ( x \right ) }{x}} \right ) }-\ln \left ( x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[-4*x^2 + y[x]^2 + 6*x*y[x]*y'[x] + (x^2 - 4*y[x]^2)*y'[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> -x/2 - Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + 
Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + 
Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 - Sqrt[2*x^2 - (2*2^
(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1
])*x^4])^(1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1
])*x^4])^(1/3))/3^(2/3) - (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*
E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*
E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, 
{y[x] -> x/2 + Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sq
rt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sq
rt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 - Sqrt[2*x^2 - (2*2^(2
/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])
*x^4])^(1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])
*x^4])^(1/3))/3^(2/3) - (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^
(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^
(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, {y
[x] -> -x/2 - Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqr
t[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqr
t[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 + Sqrt[2*x^2 - (2*2^(2/
3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*
x^4])^(1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*
x^4])^(1/3))/3^(2/3) - (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(
2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(
2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, {y[
x] -> x/2 + Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[
-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[
-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 + Sqrt[2*x^2 - (2*2^(2/3)
*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^
4])^(1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^
4])^(1/3))/3^(2/3) - (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*
C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*
C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, {y[x]
 -> x/2 - Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-4
8*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-4
8*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 - Sqrt[2*x^2 - (2*2^(2/3)*E
^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4]
)^(1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4]
)^(1/3))/3^(2/3) + (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[
1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[
1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, {y[x] -
> -x/2 + Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48
*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48
*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 - Sqrt[2*x^2 - (2*2^(2/3)*E^
(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])
^(1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])
^(1/3))/3^(2/3) + (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1
])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1
])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, {y[x] ->
 x/2 - Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E
^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E
^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 + Sqrt[2*x^2 - (2*2^(2/3)*E^(2
*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(
1/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(
1/3))/3^(2/3) + (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])
*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])
*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}, {y[x] -> -
x/2 + Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^
(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^
(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]/2 + Sqrt[2*x^2 - (2*2^(2/3)*E^(2*
C[1]))/(3^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1
/3)) - (2^(1/3)*(9*E^(2*C[1])*x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1
/3))/3^(2/3) + (2*x^3)/Sqrt[x^2 + (2*2^(2/3)*E^(2*C[1]))/(3^(1/3)*(9*E^(2*C[1])*
x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3)) + (2^(1/3)*(9*E^(2*C[1])*
x^2 + Sqrt[-48*E^(6*C[1]) + 81*E^(4*C[1])*x^4])^(1/3))/3^(2/3)]]/2}}

Maple raw input

dsolve((x^2-4*y(x)^2)*diff(y(x),x)^2+6*x*y(x)*diff(y(x),x)-4*x^2+y(x)^2 = 0, y(x),'implicit')

Maple raw output

-1/4*ln((y(x)-x)/x)-3/4*ln((x+y(x))/x)-ln(x)-_C1 = 0, -3/4*ln((y(x)-x)/x)-1/4*ln
((x+y(x))/x)-ln(x)-_C1 = 0