2.5 Linear ode
\[ y^{\prime }+p\left ( x\right ) y=q\left ( x\right ) \]
ode internal name "linear"
Solved by finding integration factor
\[ \mu =e^{\int p\left ( x\right ) dx}\]
The ode then becomes
\(\frac {d}{dx}\left ( \mu y\right ) =\mu q\). Left side is not complete
differential. Hence integrating both sides gives
\begin{align*} \mu y & =\int \mu qdx+c\\ y & =\left ( \int \mu qdx+c\right ) \frac {1}{\mu }\\ & =\left ( \int q\left ( x\right ) e^{\int p\left ( x\right ) dx}dx+c\right ) e^{\int -p\left ( x\right ) dx}\end{align*}
If \(\mu \) can not be evaluated explicitly then the integration factor is written as
\[ \mu =e^{\int _{0}^{x}p\left ( \tau \right ) d\tau }\]
And the
solution become
\[ y=\left ( \int _{0}^{x}q\left ( \tau \right ) e^{\int _{0}^{x}p\left ( \tau \right ) d\tau }d\tau +c\right ) e^{\int _{0}^{x}-p\left ( \tau \right ) d\tau }\]
For an example, if the ode was
\(y^{\prime }+p\left ( x\right ) y=\sin \left ( x\right ) \) then the solution is
\[ y=\left ( \int _{0}^{x}\sin \left ( \tau \right ) e^{\int _{0}^{\tau }p\left ( \tau \right ) d\tau }d\tau +c\right ) e^{\int _{0}^{x}-p\left ( \tau \right ) d\tau }\]
On the other hand, If
\(\mu \)
can be evaluated explicitly (i.e. the integration can be done) but
\(\int \mu qdx\) can not (may be because
\(q\left ( x\right ) \) is too complicated or given as unknown function, then the solution is
\[ y=\left ( \int _{0}^{x}q\left ( \tau \right ) \mu \left ( \tau \right ) d\tau +c\right ) \frac {1}{\mu \left ( x\right ) }\]
For an example,
given ode
\(y^{\prime }+\sin \left ( x\right ) y=q\left ( x\right ) \) then the solution is
\[ y=\left ( \int _{0}^{x}q\left ( \tau \right ) e^{-\cos \left ( \tau \right ) }d\tau +c\right ) e^{\cos \left ( x\right ) }\]
In all the above, now the constant of integration can be solved for, if initial condition is
given.