3.4.10.14 Example y=132y+y3x2x

Solve

y=132y+y3x2xy=ω(x,y)

Using Maple the infinitesimals are

ξ=32x13η=yx43

(Will need to show how to obtain these). Lets solve this using the integration factor method first. The integrating factor is given by

μ(x,y)=1ηξω=1yx4332x13(132y+y3x2x)=2x43x2y3

Then the general solution is

μ(x,y)(dyωdx)=c12x43x2y3(dy(132y+y3x2x)dx)=c1(2x43x2y3dy(2x43x2y3)(132y+y3x2x)dx)=c1(2x43x2y3dy(23x13x2y3)(2y+y3x2)dx)=c1

Hence we need to find F(x,y) s.t. dF=(2x43x2y3dy(23x13x2y3)(2y+y3x2)dx) which will make the solution F=c. Therefore

dF=Fxdx+Fydy=2x43x2y3dy(23x13x2y3)(2y+y3x2)dx

Hence

(1)Fx=23x13(2y+y3x2)x2y3(2)Fy=2x43x2y3

Integrating (1) gives

F=(23x13(2y+y3x2)x2y3dx)+g(y)(3)=12x43+13ln(x43+x23y+y2)233arctan(13(2x23+y)3y)23ln(x23y)+g(y)

Where g(y) acts as the integration constant but F depends on x,y it becomes an arbitrary function. Taking derivative of the above w.r.t. y gives

(4)Fy=2x43x2y3+g(y)

Equating (4,2) gives

2x43x2y3=2x43x2y3+g(y)0=g(y)g(y)=c1

Hence (3) becomes

F=12x43+13ln(x43+x23y+y2)233arctan(13(2x23+y)3y)23ln(x23y)+c1

Therefore the solution is

F=c12x43+13ln(x43+x23y+y2)233arctan(13(2x23+y)3y)23ln(x23y)=c2

Where constants c1,c were combined into c2. Now this ode will be solved using direct symmetry by converting to canonical coordinates.  This is done by using the standard characteristic equation by writing

dxξ=dyη=dSdx32x13=dyyx43=dS

First pair of ode’s give

dydx=yx4332x13=23xy

Hence

y=c1x23

Therefore

R=yx23

And

dS=dxξ=23x13dx

Integrating gives

S=23x13dx=12x43+c1=12x43

By choosing c1=0. Now the ODE dSdR=F(R) is found from

dSdR=dSdx+ω(x,y)dSdydRdx+ω(x,y)dRdy=Sx+ω(x,y)SyRx+ω(x,y)Ry

But Sx=23x13,Rx=23yx53,Sy=0,Ry=x23. Substituting these into the above and simplifying gives

dSdR=23x1323yx53+ω(x,y)x23=23x1323yx53+(132y+y3x2x)x23=2x2x2y3

But R=yx23 or y=Rx23. The above becomes

dSdR=2x2x2R3x2=21R3

Which is a quadrature. Solving gives

dS=21R3dRS=13ln(R2+x+1)233arctan(13(1+2R)3)+23ln(R1)+c1

Converting back to x,y gives

12x43=13ln((yx23)2+x+1)233arctan(13(1+2(yx23))3)+23ln((yx23)1)+c112x43=13ln(y2x43+x+1)233arctan(13(1+2yx23)3)+23ln(yx231)+c1