6.3.2.7 Example 7

yy(y)2=x is put in normal form (by replacing y with p) which gives

(1)y=x+p2p=1px+p=xf+g

Hence f=1p,g(p)=p. Taking derivative w.r.t. x gives

p=(f+xfdpdx)+(gdpdx)p=f+(xf+g)dpdxpf=(xf+g)dpdx

Using f=1p,g=p. Since f(p)p then this is d’Almbert ode. the above simplifies to

(2A)p1p=(xp2+1)dpdx

The singular solution is found by setting dpdx=0 in (2) which results in Q(p)=0 or p1=0 or p=1. Substituting these values in (1) gives the solutions

(3)y1(x)=x+1

The general solution is found by finding p from (2A). Since (2A) is not linear and not separable in p, then inversion is needed. Writing (2) as

dxdp=1xp2p1p=1pp3(xp2)

Hence

dxdp+xp(p21)=p2p(p21)

This is now linear ODE in x(p). The solution is

x=p(p1)(1+p)ln(p+p21)(1+p)(p1)+c1p(1+p)(p1)(4)=pp21ln(p+p21)p21+c1pp21

Now we need to eliminate p from (1,4). From (1) since y=1px+p then solving for p gives

p1=y2+12y24xp2=y212y24x

Substituting each pi in (4) gives the general solution (implicit) in y(x). First solution is

x=(y2+12y24x)(y2+12y24x)21ln(y2+12y24x+(y2+12y24x)21)(y2+12y24x)21+c1y2+12y24x(y2+12y24x)21

And second solution is

x=(y212y24x)(y212y24x)21ln(y212y24x+(y212y24x)21)(y212y24x)21+c1y212y24x(y212y24x)21