5.5.1.2 Example 2
Example 1
Example 2
Example 3
(y)32=2y+3x+9

Let u=2y+3x+9 then u=2y+3 then y=u32 and the ode becomes

(u32)32=u((u32)12)3=u

Let (u32)12=Y then

Y3=uY={u13u13(12+i32)13u13(12i32)13

Hence

(u32)12={u13u13(12+i32)13u13(12i32)13(u32)={u23u23(12+i32)23u23(12i32)23u={2u23+32u23(12+i32)23+32u23(12i32)23+3

Each is solved as separable.

{du2u23+3=dxdu2u23(12+i32)23+3=dxdu2u23(12i32)23+3=dx

Hence the three solutions are

{2y(x)+3x+9dz2z23+3=x+c12y(x)+3x+9dz2z23(12+i32)23+3=x+c12y(x)+3x+9dz2z23(12i32)23+3=x+c1